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“Toys are not really as innocent as they look. Toys and games are precursors to serious ideas.”

Charles Eames

FIGURE 1: Our story begins in 1907 with the 74th Canterbury puz-
zle [8]. This puzzle shows a chessboard broken into thirteen pieces
(polyominoes). Twelve of them have five squares (pentominoes) and
one of them has four squares (tetromino). The puzzle is solved by

reconstructing the 8× 8 chessboard using these thirteen pieces.
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Chapter 1

Introduction

Random shapes have served as important models for a large class of natural phe-
nomena in a wide range of natural science disciplines, including meteorology, sta-
tistical mechanics, biology, chemistry, and astronomy.

We study two models of random shapes in this thesis — the Eden Cell Growth
Model (EGM) and uniform and percolation distributed polyominoes (also known
as lattice-based animals). These models have long been of interest in mathematical
physics, probability, and statistical mechanics [11, 15].

Both structures have interesting topological, combinatorial, and geometrical prop-
erties. However, until now, tools from stochastic topology and topological data anal-
ysis have not been used to study these properties. Here, we present the first studies
of EGM and polyominoes using these methods.

This thesis contains three original sets of contributions that are outlined in the
next three sections, where we also describe polyominoes and the EGM, and where
we state and provide context for our original results by surveying the existing math-
ematical literature.

1.1 Polyominoes with maximally many holes

In 1954, Solomon W. Golomb [13] defined an n-omino (which is a polyomino with
area of n) as a rook-connected subset of n squares of the infinite checkerboard.

Even though polyominoes have been studied by the mathematical community
for more than 60 years, it is still unknown how to find a formula for computing the
exact number of polyominoes with a fixed number of squares.

Murray Eden was the first to propose and study the polyomino enumeration
problem from an asymptotic combinatorics point of view [10]. In that work, Eden
gives the first upper and lower bounds of the number of polyominoes with area n,
represented as an

(3.14)n ≤ an ≤
(
27

4

)n
. (1.1)

Eden [10] also pointed out the similarity between polyominoes and Random
Walks (RW), Self Avoiding Walks (SAW), and percolation processes on the regu-
lar square lattice on the plane. Because of these similarities, polyominoes have been
used to study problems in crystallography, solid state, statistical mechanics, and
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chemistry [15].

In 1965, David A. Klarner [20] improved the lower bound of the number of poly-
ominoes of area n to (3.20)n ≤ an. In 1967, Klarner [19] proved that the sequence
{an}

∞

n=1 satisfies the following limit

lim
n→∞

(an)
1
n = λ. (1.2)

In the proof of this limit he used the following important submultiplicativity in-
equality

an · am ≤ an+m.

This inequality can be proved by a concatenation argument. In that paper, Klarner
also improved the lower bound of the number of n-ominoes to (3.73)n ≤ an for
n� 1. After Klarner’s papers the constant λ has been called the Klarner’s constant.

The last lower bound improvement of the Klarner’s constant, published in 2006
[3], is 3.980137 ≤ λ; the last improvement of the upper bound of Klarner’s constant,
published in 2015 [2], is λ ≤ 4.5685. It is believed that an ≈ Cλnnθ where θ = −1
and λ = 4.0625696 but this has not been proved yet.

Although polyominoes with less than seven tiles do not have holes, we show in
Chapter 3 that polyominoes with holes grow exponentially faster than polyominoes
without holes. Thus, it is important to study polyominoes that have holes.

The first original contributions of this thesis, that we present in Chapter 2, are
about the extremal combinatorial behavior of the maximum number of holes that a
polyomino can have.

We prove a tight bound for the asymptotic behavior of the maximal number of
holes of an n-omino as n → ∞. We also give an exact formula for this quantity for
an infinite sequence of natural numbers.

Denote the maximum number of holes that a polyomino can have by f(n). In
Theorem 1 (that we prove in Section 2.4) we show that if

nk =
(
22k+1 + 3× 2k+1 + 4

)
/3 and hk =

(
22k − 1

)
/3,

then f(nk) = hk for every k ≥ 1.

In Section 2.5 we prove Theorem 2 that gives general bounds which hold for all
n

1

2
n−

√
5

2
n+ o(

√
n) ≤ f(n) ≤ 1

2
n−

√
3

2
n+ o(

√
n),

for large enough n.

1.2 Topology of random polyominoes

Percolation theory models on the square regular lattice are relevant in various areas
of theoretical and experimental physics like material science [30], thermodynamics
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[6], and statistical mechanics [4].

This gives relevance to the study of the topological features, such as the homol-
ogy groups, of the finite clusters of the percolation model on the regular square
lattice of the plane. These finite clusters correspond to polyominoes.

In Chapter 3 we present our second set of contributions of this thesis about the
growth rate of the expectation of the number of holes in a polyomino with uniform
and percolation distributions. We prove the existence of linear bounds for the ex-
pected number of holes of an n-omino with respect to both the uniform and perco-
lation distributions. Furthermore, we exhibit particular constants for the upper and
lower bounds in the uniform distribution case.

We prove in Theorem 3 that with the uniform distribution defined on the set of
all n-ominoes, there exist constants C1 and C2 (not depending on n) such that

C1 · n ≤ E[β1] ≤ C2 · n, (1.3)

for sufficiently large values of n. We also give exact values for C1 and C2.

For percolation distributions, we prove in Theorem 5 that for any p ∈ (0, 1),
with the percolation distribution πp defined on the set of polyominoes, there exist
constants C1 and C2, not depending on n, but depending on p, such that

C1 · n ≤ E[β1] ≤ C2 · n.

As far as we know, this is the first time that these problems are studied for uni-
form and percolation distributed polyominoes.

In Appendix A, we describe Markov Chain Monte Carlo algorithms that we have
implemented to sample random polyominoes.

1.3 The Eden Cell Growth Model

In 1961, Eden [10] introduced a two dimensional cell growth model based on poly-
ominoes. He generated some random polyominoes under a cell growth process with
n tiles for particular values of n with n ≤ 215. In Figure 1.1 we show a cell colony
with 10, 000 sites that we have simulated with the EGM algorithm.

The cell growth model can be described as follows [9, 10, 16]: it starts with a
polyomino consisting of a single cell and it grows by adding one cell at a time uni-
formly and randomly with the restriction that the newly added cell needs to share
at least one side with any other cell already present in the polyomino. Murray Eden
has mentioned [10] that the first person to model the cell growth process from a
mathematical point of view was Alan M.Turing [31] in 1952. However, Turing’s cell
growth model is not based on polyominoes; he used a one-dimensional structure to
study the cell growth problem.

The EGM corresponds to a site First Passage Percolation model in the regular
square lattice on the plane after applying the right time-change [1]. As far as we
know, the evolution of the topology of the EGM (measured by its homology) has not
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FIGURE 1.1: Eden Cell Growth Model with 10,000 tiles.

yet been studied and the same is true for any of the First Passage Percolation models.

This gives importance to our third set of contributions that we present in Chapter
4, which consists of importing new techniques from stochastic topology and topo-
logical data analysis to study the topological evolution of First Passage Percolation
models. In particular, we are the first to study the persistent homology associated to
the evolution of the homology of the EGM. Even more, we are the first to study the
persistent homology associated to First Passage Percolation models.

In Theorem 7 we characterize the change in time of the rank of the first homol-
ogy group on the stochastic process defined by the EGM. This allows us to design
and implement a new algorithm that computes the persistent homology associated
to this stochastic process at each time and that keeps track of geometric features of
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the homology of the process like the area and location of the holes. Also, our algo-
rithm keeps track of the persistent homology splitting tree—see [26] as a reference
for splitting trees.

In Section 4.5, we present and analyze the results of the computational experi-
ments that we have made with this algorithm. One of the conjectures that we have,
based on these experiments, is about the asymptotic behavior of the number of holes.
We present this conjecture in what follows.

Let βt be the random variable that measures the rank of the first homology group
of the EGM stochastic process at time t (the number of holes at time t), then for
sufficiently large values of t

C1
α
√
t ≤ E[βt] ≤ C2

α
√
t, (1.4)

for some constants C1,C2 > 0 and α ≥ 1
2
. We suspect that α = 0.5, C1 > 1, and

C2 < 1.5.

In Appendix B, we present more results of simulation experiments described in
Section 4.5.6.
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Chapter 2

Maximizing the number of holes in
polyominoes

Denote the maximum number of holes that a polyomino with n tiles can have by
f(n). Our first contribution of the thesis is finding the exact value of f(n) for an infi-
nite sequence of values of n and giving tight bounds for the asymptotic behavior of
f(n) when n tends to infinity.

In particular, in Theorem 1 (that we prove in Section 2.4) we show that if

nk =
(
22k+1 + 3× 2k+1 + 4

)
/3 and hk =

(
22k − 1

)
/3,

then f(nk) = hk for every k ≥ 1. For proving this result, we construct a sequence of
polyominoes that has nk tiles and hk holes. To our surprise and delight this sequence
of polyominoes has interesting geometric properties that we study in Section 2.6.

We also give general bounds which hold for all n. In Theorem 2 we prove that

1

2
n−

√
5

2
n+ o(

√
n) ≤ f(n) ≤ 1

2
n−

√
3

2
n+ o(

√
n),

for large enough n.

Mathematicians have been studying properties of polyominoes for more than 60
years [15]. As far as we know, this is the first time that the asymptotic behavior of
f(n) has been studied. Also, exact values for f(n) were only known for 1 ≤ n ≤ 28

[27]. These values of f are contained in Table 2.2.2.

2.1 We have been playing with polyominoes since childhood

In this section we introduce the concept of polyominoes in an informal setting, and
we explain why we are interested in studying polyominoes with holes.

Polyominoes can be made by gluing together, edge-to-edge, finitely many, non-
overlapping unit squares on the plane. The simplest polyomino that can be con-
structed (and that begins to fascinate us already as mere toddlers) is the polyomino
with only one square: the monomino.
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But the most popular polyominoes are dominoes and tetrominoes. Usually, one
can buy a set of double-six (28 tiles) dominoes in any department store. Tetrominoes
are the main characters in the world-famous Tetris video game —see Figure 2.1.

FIGURE 2.1: This figure shows the seven tetrominoes that comprise
the video game Tetris. This game was originally released in the Soviet
Union in 1984. Nintendo introduced it to the rest of the world in 1989.

With five squares we get the twelve pentominoes that are depicted in Figure 1.
As the description of the figure explains, these twelve pentominoes, in addition to
the square shaped tetromino, can tessellate an 8× 8 chessboard.

There are 35 hexominoes and 108 heptominoes (under some equivalent reflection
and rotation relationships that we will make precise in the next section). As far as I
am aware, humanity has only computed the exact number of polyominoes with no
more than 56 squares. Currently, there is no known formula for the number of poly-
ominoes with any given number of squares. Even more, there is not an agreement
on what it means for an enumerative combinatorial function to have a formula [24].

Any puzzle or problem that asks about covering a certain subset of the infinite
checkerboard with a set of polyominoes is a tiling problem. Tiling problems involv-
ing polyominoes are well studied—see, for example, [14] or [28]. In tiling prob-
lems, one almost always restricts to simply-connected polyominoes, i.e., polyomi-
noes without holes. But as we mentioned in Section 1.1, if n > 6 then n-ominoes
with holes exist—see Figure 2.2.

FIGURE 2.2: A heptomino and an octomino with one hole.

Moreover, as the number of squares gets bigger and bigger, polyominoes with
holes begin to outnumber polyominoes without holes. In Chapter 3, we prove that
most polyominoes have holes as the number of polyominoes with holes grows ex-
ponentially faster than the number of polyominoes without holes. This is one of the
main reasons why studying polyominoes with holes, in particular polyominoes with
maximally many holes, matters.
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2.2 Polyominoes, holes, and statement of main results

In this section we define polyominoes and holes in polyominoes. We also specify in
detail what is known about f(n).

2.2.1 Polyominoes

In 1954, S. W. Golomb [13] defined an n-omino (which is a polyomino with area of
n) as a rook-connected subset of n squares of the infinite checkerboard. This defi-
nition implies that a polyomino is the union of a non-empty, finite subset of unitary
square tiles with a connected interior of the plane’s regular unitary square tiling. We
also require polyominoes to be closed subsets of R2; thus, a polyomino contains the
edges and vertices of its unitary squares.

Based on this definition of a polyomino, if we want to make sense of the set of
polyominoes with a given number of tiles and its cardinality, we need first to es-
tablish when two n-ominoes will be considered equivalent. The three most common
ways to define this equivalence relationship are known as: free, one-sided, and fixed
polyominoes.

• Two free polyominoes are considered equivalent if they are congruent after
performing any required translations, reflections, and/or rotations. For exam-
ple, there is only one free domino, two free triominoes, five free tetrominoes,
and twelve free pentominoes. Free pentominoes are depicted in Figure 1.

• Two one-sided polyominoes are considered equivalent if they are congruent
after performing any required translations and/or rotations. For example,
there is only one one-sided domino, two one-sided triominoes, seven one-
sided tetrominoes, and 18 one-sided pentominoes. One-sided tetrominoes are
depicted in Figure 2.1.

• Two fixed polyominoes are considered equivalent if they are congruent after
translation. For example, there are two one-sided dominoes, six one-sided
triominoes, 19 one-sided tetrominoes, and 63 one-sided pentominoes.

Counting polyominoes defined with one of these equivalent relationships gives
bounds for counting polyominoes with the other two equivalent relationships. These
bounds depend on the symmetry of the plane’s regular square lattice:

fixed ≤ 2 (one-sided) ≤ 8 (free).

Because the number of holes in a polyomino is invariant under rotations, trans-
lations, and reflections, unless we explicitly mention it, the results that we prove in
this chapter are true for polyominoes with any one of these three equivalent rela-
tionships. We will work with free polyominoes for the rest of the chapter. We denote
the set of all free n-ominoes by An. In Chapter 3 and Chapter 4, we specify other
geometric properties of elements in An that depend on their positions in the plane.
Although for now, we do not take into consideration the geometric position of the
polyominoes on the plane.
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2.2.2 Counting holes and the statement of main results

As we have mentioned before, our main interest in this chapter is in maximizing
the number of holes that a polyomino can have. Figure 2.3 illustrates an 8-omino,
a 20-omino, and a 60-omino with 1, 5, and 21 holes, respectively. We will show in
Section 2.4 that these are polyominoes with maximally many holes.

To be precise about the topology, remember that we consider the tiles to be closed
unit squares on the plane. Polyominoes are finite unions of these closed squares, so
they are compact. The holes of a polyomino are defined to be the bounded connected
components of its complement on the plane.

In Chapter 3, when given a polyomino, we will construct a corresponding CW
cubical complex such that the number of holes would be equal to the rank of the
first homological group of this cubical complex; for the purpose of this chapter, the
definitions and notions of polyominoes and holes given above are enough.

FIGURE 2.3: Polyominoes with maximally many holes.

Definition 1. Given a polyomino A, we denote the number of holes in A by h(A). For
n ≥ 1 we define

f(n) = max
A∈An

h(A). (2.1)

Similarly, we define g(m) to be the minimum number N such that there exists
anN-omino withm holes. Observe that f and g are positive functions and we intuit
that they are non-decreasing. We check below that g is a right inverse of f.

In Table 2.2.2, we present the computational results obtained by Tomás Oliveira
e Silva [27] on enumerating free polyominoes according to area and number of holes
up to n = 28. At the time of this writing, his computations were state of the art. As
a corollary of his calculations, we know the value of f(n) for n ≤ 28 and of g(m) for
m ≤ 8.

The function g is listed on the website of The On-Line Encyclopedia Of Integer
Sequence as sequence A118797. This webpage lists the values of g(m) for m ≤ 8,
and states that the best upper bound known for g(m) is g(m) ≤ 3m+ 5.
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We prove in this thesis a significant improvement for this upper bound as a corol-
lary of Theorem 2. For large enough values ofm

g(m) ≤ 2m+C
√
m+ c,

where C and c are positive fixed constants not depending onm.

Also in Theorem 2, we give the exact value of the functions g(m) and f(n) for an
infinite sequence of natural numbers. We state these results in detail in what follows.

Here and throughout

nk =
1

3

(
22k+1 + 3 · 2k+1 + 4

)
, (2.2)

and
hk =

1

3

(
22k − 1

)
. (2.3)

We describe in Section 2.4 a construction of a sequence of polyominoes with nk
tiles and hk holes. From this sequence we generate other sequences of polyominoes
with nk − i tiles for i ∈ {1, 2, 3} for which we find the values of f(nk − i).

Theorem 1. For k ≥ 1 we have f(nk) = hk. Moreover, f(nk − 1) = hk, and f(nk − 2) =
hk − 1.

As a consequence of this theorem, we get the exact values of g(m) for infinite
different values of m. This is proved using Theorem 1 and the properties of f and g
that we study in Section 2.3.

Corollary 1. g(hk) = nk − 1 for all k ∈ N.

We also establish the first and second order asymptotic behavior of f when we
give tight bounds for f(n) for large enough values of n.

Theorem 2. Let f(n) denote the maximum number of holes that a polyomino with n squares
can have. Given C1 >

√
5/2 and C2 <

√
3/2, there exists an n0 = n0(C1,C2) such that

1

2
n−C1

√
n ≤ f(n) ≤ 1

2
n−C2

√
n,

for n > n0.
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17
21

12
8

34
6

14
80

54
75

94
10

9
23

84
3

15
30

01
12

7
41

08
20

14
56

0
69

16
11

23
00

03
17

66
59

1
81

86
3

79
8

17
42

16
15

29
75

06
17

9
43

31
72

70
21

8
18

15
87

81
10

6
31

59
62

40
21

92
75

2
51

77
5

17
9

19
59

95
63

89
3

13
19

91
61

9
10

72
62

52
33

99
58

25
09

1
20

22
69

50
60

62
54

79
92

18
3

51
09

42
03

20
53

87
2

25
60

9
21

21
86

09
44

26
88

22
63

47
76

12
23

82
59

28
0

11
66

55
93

21
49

32
57

3
22

32
72

56
37

37
3

93
09

38
61

78
10

92
05

30
68

63
19

29
45

15
78

98
4

91
40

23
12

46
21

83
33

54
38

15
00

82
05

7
49

34
65

22
98

32
97

98
27

8
10

53
62

60
10

54
17

64
24

47
53

68
83

45
68

15
58

59
23

54
24

22
03

47
67

83
7

16
70

46
60

31
65

41
16

45
98

27
67

21
31

25
18

16
10

33
45

75
2

63
50

67
47

86
28

97
40

75
19

11
9

82
56

76
23

65
38

39
81

49
9

79
19

37
5

38
02

2
4

26
69

48
22

81
04

70
3

25
81

73
77

04
03

9
42

69
16

82
81

81
39

99
22

02
19

8
21

56
11

44
68

57
38

74
44

48
07

13
32

9
27

26
61

86
71

50
59

89
10

47
45

87
32

51
20

18
57

25
35

75
57

7
19

04
31

00
30

84
11

67
88

88
36

2
38

37
57

34
4

48
72

67
9

10
33

2
28

10
21

02
78

83
62

30
3

42
42

29
70

46
79

80
80

27
74

91
30

62
3

89
37

26
55

02
31

61
41

32
42

60
3

24
10

29
23

66
42

36
02

39
18

82
21

37

Table 2.2.2: Enumeration of n-ominoes by holes for 1 ≤ n ≤ 28 [27].



2.3. Preliminary results 13

Also, the sequence of polyominoes constructed in the proof of Theorem 1 allows
us to show that the constant

√
3/2 involved in the upper bound of f given in Theo-

rem 2 cannot be improved.

2.3 Preliminary results

In this section we prove all the preliminary results and define the geometric concepts
that we need in order to prove Theorem 1 and Theorem 2.

We use a result proved by F. Harary and H. Harborth [17], stated in Theorem A
below, that provides a formula for calculating the minimum possible edge perimeter
that a polyomino with a given area can have. Analogous results to Theorem A are
known for the triangular and the hexagonal regular lattices of the plane and for the
cubical lattice in the space. Thus, all the preliminary results and theorems that we
prove in this chapter can be derived for these other regular lattices and their respec-
tive polyforms.

We begin by analyzing the properties of the functions f and g by establishing
how they relate to one another.

2.3.1 Properties of f and g

By definition, f is a step function with values in the natural numbers. In Figure
2.4, we can observe that f(n) is monotonically increasing up to n = 28; and that
f(n+ 1) − f(n) ≤ 1 for n in this range. Intuitively, we expect that f is a monotoni-
cally increasing function and that f(n+ 1) − f(n) ≤ 1 holds for all n ∈ N.

We prove first that f is a non-decreasing function. It is always possible to attach
a square tile to the outer perimeter of an n-omino and obtain an (n+ 1)-omino with
at least the same number of holes. This implies that f(n) ≤ f(n+ 1) for evey n ≥ 1,
so f is non-decreasing. The following lemma tells us that f never increases in one
step by more than one.

Lemma 1. For every n ≥ 1

f(n+ 1) − f(n) ≤ 1.

Proof. We will show that if A is any (n+ 1)-omino, then there exists an n-omino B
such that h(B) ≥ h(A) − 1.

Let A be an (n+ 1)-omino and k be the number of tiles in the bottom row of A
and denote the leftmost tile in this row by l.

If k = 1, then l is only connected to one other tile. This allows us to delete l
without disconnecting A or destroying any holes.

Now, suppose that the statement holds true whenever k = 1, 2, . . . ,m (this is the
induction hypothesis). Let k = m+ 1 and denote by l1, l2, and l3 the tile sites that
share boundary with and are up and to the right of l—see Figure 2.5. Each of these
three tile sites (l1, l2, and l3) could either be occupied by tiles in A or not. All six
possibilities for l1, l2 and l3 are depicted in Figure 2.5. Any other combination not
depicted in this figure would result in A having a disconnected interior and thus
would not possible.
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FIGURE 2.4: The step function f(n) for 1 ≤ n ≤ 28. These values of
f(n) were obtained from Table 2.2.2

If A is such that the local tile structure around l coincides with C1, C2, C3, C5, or
C6, then it is already possible to delete l from A to generate an n-omino B such that
h(B) ≥ h(A) − 1.

However, if C4 is the local structure around l, then it is possible that deleting l
disconnects A. In this case, we delete l and then add a new tile at the empty tile site
l2. This yields a new polyomino A′ with the same number of tiles. If the addition
of this new tile causes the coverage of a hole, then h(A′) = h(A) − 1, and C1 or C3
must then be the new local structure around the leftmost tile of the bottom row ofA′.
This allows us to terminate the process by deleting the bottom, leftmost tile from A′
without destroying more holes. If we have not destroyed any holes, then we have an
(n+ 1)-omino A′ with h(A) = h(A′) and with k = m tiles in the bottom row. Hence,
we can apply the induction hypothesis and the desired result follows.

In the next lemma we prove that g is the right inverse of f and that the values of
g capture the times of f increasements.

Lemma 2. For every m ≥ 1, we have f(g(m)) = m. Also, g(m) = n if and only if
f(n) = m and f(n− 1) = m− 1.

Proof. By the definitions of f and g, we have that f (g(m)) ≥ m. Supposing by
way of contradiction that for some m we have f(g(m)) ≥ m + 1. By Lemma 1,
f(g(m) − 1) ≥ m. This implies that there exists a polyomino with g(m) − 1 tiles
and at least m holes, but this contradicts the definition of g. We then conclude that
f(g(m)) = m for everym. It then follows that g(m) = n if and only if f(n) = m and
f(n− 1) = m− 1.
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l

l1

l3

l2

C1

l

l1

l3

l2

C2

l

l1

l3

l2

C3

l

l1

l3

l2

C4

l

l1

l3

l2

C5

l

l1

l3

l2

C6

FIGURE 2.5: The tile l denotes the leftmost tile in the bottom row of
a polyomino A. If the tile sites l1, l2, or l3 are in A, they are colored
dark gray; otherwise, they are light gray. C1-C6 are the six possible
combinations for these tile sites. All other possibilities are rejected
because they give a square structure with a non-connected interior

but we are supposing that A is a polyomino.

As a consequence of this lemma, we get that g is also a monotonically increasing
function. In Figure 2.6, we can observe that up tom = 8 the steps of g are of a length
less than or equal to four and no less than two. This can also be observed in Figure
2.4 because the steps of f are located no more than four and at least two values apart.
In the next lemma we partially prove that this property of g is always true.

FIGURE 2.6: The step function g(m) for 1 ≤ m ≤ 8. These values of
g(m) were obtained from Table 2.2.2
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Lemma 3. For everym ≥ 1

1 ≤ g(m+ 1) − g(m) ≤ 4.

Proof. Assume that g(m+ 1) = n and g(m) = n for a natural numberm. Then, from
Lemma 2, we get f(n) = m+ 1, f(n− 1) = m, f(n) = m, and f(n− 1) = m− 1which
is a contradiction. It follows that g(m+ 1) cannot be equal to g(m) for any natural
number m. Because g is a monotonically increasing function, we conclude that for
allm ∈ N

1 ≤ g(m+ 1) − g(m).

l

l1

l3

l2

C1

l

l1

l3

l2

the new hole created

l∗

FIGURE 2.7: Given a polyomino denote the leftmost tile in the bottom
row by l. We are assuming that the local configuration around the tile
l isC1— see Figure 2.5. The added tiles have a black dot in the middle

and we have moved the tile that was in l to the l∗ position.

l

l1

l3

l2

C2

l

l1T

l3

l2

C2

l

l1T

l3

l2

Option A)

l

l1

l3

l2

Option B)

FIGURE 2.8: Given a polyomino denote the leftmost tile in the bottom
row by l. We are assuming that the local configuration around the tile
l is C2— see Figure 2.5.In this case T can be part of the polyomino. If
T is in the polyomino, then we generate one more hole as depicted in
Option A). If T is not in the polyomino, then we generate one more
hole as depicted in Option B). The added tiles have a black dot in the
middle. In the case of Option B) we have moved the tile that was in l
to the position l1. This movement does not cover an already existing

hole because T is not a tile in the polyomino.
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l

l1

l3

l2

C3

l

l1

l3

l2

the new hole created

FIGURE 2.9: Given a polyomino denote the leftmost tile in the bottom
row by l. We are assuming that the local configuration around the tile
l is C3—see Figure 2.5. The added tiles have a black dot in the middle
and we have moved the tile that was in l to the position l3. This
movement does not cover a hole because l3 is in the bottom row of

the polyomino.

It is possible to add four tiles or less to any polyomino (for example, around the
leftmost tile in the bottom row) and, if needed, relocate some tiles already present in
the polyomino to create one more hole—see Figures 2.7, 2.8, 2.9, 2.10, 2.11 and 2.12.
This implies that for allm ∈ N

g(m+ 1) − g(m) ≤ 4.

We have not yet been able to prove that 2 ≤ g(m+ 1) − g(m) for allm ∈ N, but
I strongly believe this is the case. This is stated in the next conjecture.

Conjecture 1. For everym ≥ 1

2 ≤ g(m+ 1) − g(m) ≤ 4.

2.3.2 Perimeter

The edge perimeter per(A) of a polyomino A ∈ An is defined as the number of
edges on the topological boundary of A. As an example, the 8-omino in Figure 2.3
has a perimeter equal to 16.

For all n ∈ N we denote pmin(n) and pmax(n) as the minimum and maximum
edge perimeters possible for a polyomino with an area of n.

In 1976, F. Harary and H. Harborth [17] found an exact formula for the minimum
perimeter possible in an n-omino.

Theorem A. (F. Harary and H. Harborth, 1976)

pmin(n) = 2
2
√
n�. (2.4)

In particular, they exhibited a family of spiral-like polyominoes that achieve the
minimum perimeter. Any square polyomino is a spiral-like polyomino—see Figure
2.13. In [21], S. Kurz counts the number of polyominoes (up to rotations, transla-
tions, and reflections) that have a perimeter equal to the minimum perimeter.

Let A ∈ An. The number of edges that are on the boundary of two squares of A
will be denoted by b(A), in which case the edges are contained in the interior of the
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l

l1

l3

l2

C4

l

l1T

l3

l2

C4

l

l1T

l3

l2

Option A)

l

l∗

l1

l3

l2

Option B)

FIGURE 2.10: Given a polyomino denote the leftmost tile in the bot-
tom row by l. We are assuming that the local configuration around
the tile l is C4— see Figure 2.5.In this case T can be in the polyomino.
If T is in the polyomino, then we generate one more hole as depicted
in Option A). If T is not in the polyomino, then we generate one more
hole as depicted in Option B). The added tiles have a black dot in the
middle. In the case of Option B) we have moved the tile that was in l
to the position l∗. This movement does not disconnect the polyomino
because the added tiles guarantee that the tiles l1 and l3 are still path

connected by a path contained in the interior of the polyomino.

polyomino. Observe that all the edges of the squares of a polyomino either belong
to the perimeter or to the interior of the polyomino. This means that

4n = per(A) + 2b(A). (2.5)

For example, if A is any 7-omino depicted in Figure 2.14, then b(A) = n− 1 = 6
and per(A) = 4n− 2(n− 1) = 16.

Let bmin(n) be the minimum number of edges shared by two squares that an
n-omino can have. It is possible to associate a dual graph with any polyomino by
considering each square as a vertex and by connecting any two of these vertices if
they share an edge.

Let A be an n-omino. Because any polyomino has to have a connected interior,
then the associated dual graph of A is connected and there exists a spanning tree
of this graph. If the dual graph has n vertices, then there are at least n − 1 edges
in the spanning tree. This implies that there are at least n − 1 different common
edges in A. That is, b(A) ≥ n− 1, which is true for any n-omino. This then gives
us that bmin(n) ≥ n− 1. Observing that the n-omino C with only one column has
b(C) = n− 1, we conclude that bmin(n) = n− 1.

As a consequence of this and the equality (2.5) for every n ≥ 1

pmax(n) ≤ 4n− 2bmin(n) = 4n− 2(n− 1) = 2n+ 2, (2.6)
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l

l1

l3

l2

C5

l

l1T1

T2

l3

l2

C5

l

l1T1

l3

l2

Option A)

ll∗

l1

T2

l3

l2

Option B)

FIGURE 2.11: Given a polyomino denote the leftmost tile in the bot-
tom row by l. We are assuming that the local configuration around
the tile l is C5— see Figure 2.5.In this case either T1 or T2 (or both)
must be in the polyomino. If T1 is in the polyomino, then we generate
one more hole as depicted in Option A). If T1 is not in the polyomino,
then we generate one more hole as depicted in Option B). The added
tiles have a black dot in the middle. In the case of Option B) we have
moved the tile that was in l to the l∗ position. Also, it might be the
case that in Option B) less than four tiles are needed to be added to

the polyomino if they were already in the polyomino.

and equality is only achieved by polyominoes with the number of common edges
equal to bmin(n).

We need to distinguish when an edge that is on the perimeter of a polyomino
A ∈ An is an edge that forms part of a hole in the polyomino. To do this, we define
such edges as being part of the hole perimeter. We represent by ph(A) the number
of edges on the hole perimeter of A. We define the outer perimeter of A, denoted by
po(A), as the difference between the perimeter per(A) and the hole perimeter

po(A) = per(A) − ph(A).

If a polyominoA is simply connected, then per(A) = po(A). In general, per(A) =
po(A) + ph(A) by definition.

Polyominoes with holes might achieve the maximum perimeter. However, the
next lemma checks the intuitive fact that the minimum perimeter cannot be achieved
by polyominoes with holes.

Lemma 4. If A ∈ An and A has at least one hole, then pmin(n) < per(A).

Proof. By equation (2.4), an n-omino with k > 1 holes, has an outer perimeter at
least equal to pmin(k+n). A polyomino with k holes has a hole perimeter greater or
equal to 4k. We have

per(A) = po(A) + ph(A) ≥ pmin(n+ k) + 4k. (2.7)
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l

l1

l3

l2

C6

l

l1

l3 T

l2

the new hole created

FIGURE 2.12: We generate one additional hole in a polyomino by
adding to it three more tiles around its leftmost tile in the bottom row,
denoted by l. We are assuming that the local configuration around the
tile l is C6— see Figure 2.5. The added tiles have a black dot in the
middle. Observe that the tile T has to be in the polyomino to connect

the tiles l and l3 to the other tiles in the polyomino.

FIGURE 2.13: Polyominoes that achieve the minimum perimeter.

Because the function h(x) = 2
2√x� is a non-decreasing function, we can conclude
from expression (2.7) that

per(A) ≥ pmin(n+ k) + 4k ≥ pmin(n) + 4k > pmin(n).

We denote this minimum outer perimeter over all polyominoes with n tiles and
m holes (whenever such polyominoes exist) by poutmin(n,m). Note that we always
have

pmin(n+m) ≤ poutmin(n,m), (2.8)

by definition.

Equality in (2.8) is attained by some polyominoes. For example, the equality
holds if n = 7 and m = 1, and if n = 14 and m = 3 (for the last example see Figure
2.15).
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FIGURE 2.14: Polyominoes that achieve the maximum perimeter.

FIGURE 2.15: Achieving the minimum outer perimeter and the max-
imum number of holes. This polyomino A has 14 tiles, 3 holes,
and po(A) = 18. We know that f(14) = 3. From (2.4) we have
pmin(14 + 3) = 2
2√17� = 18. We conclude that pmin(14 + 3) =

pout
min(14, 3).

In order to show a polyomino for which the equality is not attained, we need
an upper bound for the maximum number of holes that polyominoes with the same
number of tiles can have. There exists a polyomino for which pmin(n+m) < poutmin(n,m).

2.3.3 Main upper bound

We prove in the next lemma a general result which allows us to generate an upper
bound of f from any lower bound of f. We will apply this lemma again in Sections
2.4 and 2.5.

Lemma 5. Let n be any natural number. If f(n) denotes the maximum number of holes that
an element of An can have, then

f(n) ≤ 4n− 2bmin(n) − pmin(n+ f(n))

4
. (2.9)

Proof. LetA be an element in An and let h(A) denote the number of holes inA. Then

ph(A) = 4n− 2b(A) − po(A) ≤ 4n− 2bmin(n) − po(A). (2.10)

By (2.8) we have

po(A) ≥ poutmin(n,h(A)) ≥ pmin(n+ h(A)). (2.11)

From inequalities (2.10) and (2.11) we get

ph(A) ≤ 4n− 2bmin(n) − pmin(n+ h(A)). (2.12)

Then, if A is a polyomino that has f(n) holes, we get

f(n) ≤ ph(A)

4
≤ 4n− 2bmin(n) − pmin(n+ f(n))

4
,

which establishes inequality (2.9).
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As a corollary from Lemma 5, for any lower bound of f we get the following
upper bound of f.

Corollary 2. If lbf(n) ≤ f(n), then

f(n) ≤ 1

2
n−

1

2

⌈
2
√
n+ lbf(n)

⌉
+
1

2
. (2.13)

Proof. Let lbf(n) ≤ f(n) for a natural number n, then pmin(n+ lbf(n)) ≤ pmin(n+
f(n)) by monotonicity. This inequality allows us to obtain (2.13) by substituting
pmin(n+ f(n)) with pmin(n+ lbf(n)) in (2.9).

2.4 Polyominoes that attain the maximum number of holes

In this section we construct a sequence {Sk}
∞

k=1 of polyominoes with nk squares such
that Sk have hk holes for k ≥ 1. We show in Lemma 6 that these polyominoes have
maximally many holes and that h(Sk) = f(nk) for all k ∈ N. Finally, we prove The-
orem 1.

In addition to having maximally many holes, the sequence {Sk}
∞

k=1 has very in-
teresting geometric properties that we analyze in Section 2.6.

2.4.1 Construction of the sequence

Remember that nk and hk were respectively defined in (2.2) and (2.3).

The first three elements, S1, S2, and S3, of the sequence are shown in Figure 2.3.
To generate the rest of the sequence for n ≥ 2, we use the following recursion

process:

• First, place a rotation point in the center of the top right tile of Sn−1.

• Then, rotate Sn−1 with respect to this point ninety degrees four times creating
four, overlapping copies.

• Finally, remove the tile containing the rotation point.

In Figure 2.16 we construct S4 from S3 following this recursive algorithm.

FIGURE 2.16: Generating Sn+1 from Sn (L to R). (1) The polyomino
S3, (2) four overlapping rotated copies of S3, and (3) the polyomino

S4 made by removing the tile of rotation.
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2.4.2 Number of holes in Sk and proof of Theorem 1

From this construction, we observe that for k ≥ 1 we have the recursion h(Sk) =
4h(Sk−1) + 1. The factor of four is due to the four reflected copies of Sk−1 generated
in the process of constructing Sk. The one hole added is generated by the square
removed after the rotation process. Then, because h(S1) = 1, we get h(Sk) = hk for
all k ≥ 1.

Let sk be the number of tiles in Sk for k ≥ 1. The sequence sk satisfies the recur-
sion

sk+1 = 4sk − 4(2
k + 1),

because the polyominoes Sk have side lengths of 2k+ 1 tiles and, in the rotation pro-
cess, 4(2k + 1) tiles overlap. Additionally, the sequence nk satisfies the relationship

nk+1 = 4nk − 4(2
k + 1).

Then, because both nk and sk satisfy the same recursion relationship and are equal
in the first element (s1 = 8, n1 = 8), we can conclude that nk and sk are the same
sequences. We have proved the following lemma.

Lemma 6. There exists a sequence of polyominoes {Sk}∞k=1, such that Sk has nk tiles and hk
holes.

Now we can prove Theorem 1.

Proof of Theorem 1. First we show that f(nk) = hk. From Lemma 6 we know

hk ≤ f(nk). (2.14)

Substituting this lower bound in (2.13) we have

f(nk) ≤ 1

2
nk −

1

2

⌈
2
√
nk + hk

⌉
+
1

2
. (2.15)

From the easily verified identity

hk +
1

2
=
1

2
nk −

1

2

⌈
2
√
nk + hk

⌉
+
1

2
,

and inequalities (2.14) and (2.15), we get

hk ≤ f(nk) ≤ hk +
1

2
. (2.16)

This implies that
f(nk) = hk, (2.17)

because f(nk) and hk are integers.

Now, we prove that f(nk− 1) = hk. By removing the upper leftmost square from
each Sk, it is possible to generate a sequence of polyominoes {Ak}

∞

k=1 with nk − 1
tiles each Ak, such that h(Ak) = hk. This implies that hk ≤ f(nk − 1). Then, because
f(nk − 1) ≤ f(nk) and f(nk) = hk, we can conclude that

f(nk − 1) = hk.
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Finally, we prove that f(nk − 2) = hk − 1. Because f(nk − 1) = hk and f is a
non-decreasing function, consequently f(nk − 2) ≤ hk. If we assume by way of
contradiction that f(nk − 2) = hk, then using (2.13) it must be that

hk = f(nk − 2) ≤ 1

2
(nk − 2) −

1

2

⌈
2
√

(nk − 2) + hk

⌉
+
1

2
. (2.18)

Substituting (2.2) and (2.3) in this inequality leads to a contradiction. Then f(nk −
2) < hk. From this inequality and Lemma 1, we can conclude that

f(nk − 2) = hk − 1. (2.19)

2.5 General bounds and proof of Theorem 2

The main purpose of this section is to give a proof of Theorem 2. For this, we first get
a lower bound for f for a particular sequence of natural numbers. Then, we extend
this lower bound for all f(n) for large enough n ∈ N. Finally, we apply Corollary 2
to this general lower bound to obtain a general upper bound for f(n).

2.5.1 General lower bound

We begin by describing how to construct the sequence of polyominoes {Rk}
∞

k=1 of
polyominoes withmk = 40k

2 + 20k tiles and tk = 20k2 holes.

The pattern S, depicted in Figure 2.17, covers a three-by-two rectangle of the reg-
ular square lattice. It has four occupied tiles and two empty tiles.

FIGURE 2.17: The pattern S consists of four occupied tiles and two
empty tiles.

We want to construct polyominoes that contain as many non-overlapping copies
of S as possible and in such a way that the two empty tiles in the pattern S are trans-
formed into holes. Of course, some extra tiles will be added to guarantee that the
resulting tile structure is indeed a polyomino. Our task, then, is to minimize the
number of tiles that we need to add to have connectivity and to maximize the copies
of S that can be concatenated. We solved this min-max problem by performing some
algebra and calculus computations. We describe in detail the resulting construction
in what follows.

We first place 10k2 copies of the pattern S into a rectangle with 6k tiles high and
10k tiles long. Then, we add a top row of 10k tiles and a leftmost column of 6k
tiles. Finally, we attach 2k vertically aligned dominoes (for a total of 4k tiles) to the
rightmost column. The polyomino R2 is depicted in Figure 2.18, and the 40k2 tiles
just described are colored with the lightest gray in this figure. The initial, repeated
pattern S is bordered in black within R2. From this construction we get the following
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result.

FIGURE 2.18: The polyomino R2 has 200 tiles and 80 holes.

Lemma 7. The elements of the sequence of polyominoes {Rk}
∞

k=1 have mk = 40k2 + 20k
tiles and tk = 20k2 holes.

Proof. By construction, Rk hasmk tiles. It also has two holes per instance of the S pat-
tern in Rk. There are 10k2 non-overlapping copies of S in Rk. This implies that there
are tk = 20k2 holes in Rk. Thus, we have constructed a sequence of polyominoes {Rk}
such that each polyomino Rk hasmk tiles and tk holes.

As a consequence of Lemma 7 we get the lower bound tk ≤ f(mk). By expressing
tk in terms ofmk, we get the following lemma.

Lemma 8. For each k ≥ 1

1

2
mk −

√
5

2

(
mk +

5

2

)
+
5

2
≤ f(mk). (2.20)

We now extend the lower bound given in (2.20) to all f(n) for sufficiently large
values of n. We extend this lower bound by constructing an n-omino that gives a
lower bound for f(n) if n > m22. This gives the same lower bound that we have
found for f(mk) whenever mk < n < mk+1 . First, we describe an algorithm for the
construction of such an n-omino.

Let n > m22 and k be the smallest number such that mk < n. For constructing a
polyomino Pn with n tiles by adding tiles to Rk, we use the following algorithm:

Step 0 Let P = Rk, t = n−mk, and c = k. If at any part of the process t = 1, then go
to Step 4. If t = 0, then make Pn = P, return Pn, and the process is completed.
Observe that if n = mk then Pn = Rk.

Step 1 Add one vertically-oriented domino-patterned tile on the column next to the
rightmost column of P at the highest possible position so that it creates a new
hole with an area of 1. Decrease t by 2 (t = t− 2).

Step 2 Continue to add dominoes to this column in such a way that a new hole is
created with each new domino placed. After adding each domino, decrease t
by 2. If c− 1 dominoes were added to this column of P, go to the next step.



26 Chapter 2. Maximizing the number of holes in polyominoes

Step 3 Redefine P to be the polyomino resulting from Step 1 and Step 2, decrease c by
1 (c = c− 1), and go back to Step 1.

Step 4 If t = 1, then place this last tile in any location around the outer perimeter of
P, set Pn = P, and set t = t− 1.

FIGURE 2.19: R3 has 420 tiles and 180 holes. Adding tiles in a domino
pattern on the right side yields P444, which has 444 tiles and 192

holes.

When k ≥ 22, this algorithm ensures that t will equal zero before c is zero. This
property is extremely important for the construction of the polyomino Pn. It guar-
antees that we finish the construction process of Pn by placing all the n−mk tiles
as dominoes on the left columns of Rk and that we get a new hole for each domino
added. For instance, 444 < m22 and 460 < m22. Nevertheless, this algorithm works
for constructing a polyomino with 444 tiles but does not work for constructing a
polyomino with 460 tiles.

As with this algorithm we create one new hole for each added domino to Rk
(Figure 2.19), we get

h(Rk) + �(n−mk)/2
 ≤ h(Pn).

Hence, by Lemma 8 and this last inequality of h(Pn), we have proved the follow-
ing lemma.

Lemma 9. If n > m22, then

1

2
n−

√
5

2

(
n+

5

2

)
+ 2 ≤ f(n). (2.21)
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2.5.2 Proof of Theorem 2.

Proof. Substituting (2.21) as a lower bound of f in (2.13) and using properties of the
ceiling function, we get

f(n) ≤ 1

2
n−

1

2

⌈
2

√
n+

n

2
−C1

√
n

⌉
+
1

2
(2.22)

≤ 1

2
n−

√
3n

2
−C1

√
n+ 1 (2.23)

≤ 1

2
n−C2

√
n, (2.24)

for C2 <
√
3/2 and large enough n.

Inequalities (2.21) and (2.24) imply that for any positive numbersC1 >
√
5/2 and

C2 <
√
3/2 there exists a natural number n0 such that

1

2
n−C1

√
n ≤ f(n) ≤ 1

2
n−C2

√
n,

for all n > n0. This completes the proof of Theorem 2.

The constant
√
3/2 cannot be improved because the number of holes of our main

sequence of polyominoes {Sk}∞k=1 constructed in Section 2.4 attains this constant. This
can be proved by substituting (2.2) and (2.3) in equality (2.17) to get

f(nk) =
1

2
nk −

√
3

2

√
nk + o(nk) + c. (2.25)

We do not know if it is possible to find an exact formula for f, but the number of
holes attained by the sequence of polyominoes {Sk}∞n=1 shows that

f(n) =
1

2
n−

√
3

2
n+

1

4
+
1

2
,

infinitely often.

We end this chapter by analyzing some interesting geometric and asymptotic
features of the main sequence of polyominoes {Sk} that we constructed in Section
2.4.

2.6 Some geometric properties of the sequence Sk

The recursive construction of the main sequence of polyominoes {Sk} suggests that
the inner edge boundary is approaching a limiting fractal shape. During a conver-
sation with Elliot Paquette (at The Ohio State University in 2018), he pointed out
that one way to make sense of this idea is to consider the “inner boundary” of a
polyomino Sn to be an immersed circle in R2. After appropriately rescaling and
reparameterizing, these circles seem to converge to a space-filling curve in [0, 1]2 —
see Figure 2.20.
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FIGURE 2.20: The inner boundary of S3. It can be seen as an im-
mersed circle.

Also, it is possible to derive an aperiodic tiling of the plane from our main se-
quence. Define the planar dual of a polyomino Sk as the planar graph obtained by
placing one vertex at the center of every tile and connecting two of these vertices if
the two tiles containing them share an edge or if the two vertices are contained in
tiles that have one of the patterns depicted in Figure 2.21.

FIGURE 2.21: For constructing the planar dual of a polyomino we
place vertices in each square of the polyomino and we connect two
vertices whenever they share an edge or whenever they share only
one vertex. The other two tiles in the smallest square that contains
them both are empty. This figure shows the two possibilities for this

structure and the edge that has to be drawn.

With this construction we get one bounded face for every hole—see Figure 2.22.
We can construct a limiting infinite polyomino by centering every Sk at the origin
and taking the union of all of them. The planar dual of this infinite polyomino is an
aperiodic tiling with three different prototiles: squares, pentagons, and hexagons.
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FIGURE 2.22: The polyomino S5 with its planar dual superimposed
in blue.

For analyzing the next interesting geometric property of our main sequence we
need to construct on top of a polyomino a graph that captures the edge connectivity of
its tiles. In Section 2.3.2 we have already described this construction and we have
called this graph the dual graph of a polyomino. We recall here the definition for the
convenience of the reader.

Given a polyomino P we generate its dual graph by placing vertices in the center
of each one of the tiles of P and connecting any two vertices if their corresponding
tiles share an edge. This graph is commonly referred to in the literature as a site
animal and we will also use this construction in the following chapters.

Any elementAk of the sequence of polyominoes {Ak}∞k=1 constructed in the proof
of Theorem 1, and that has been derived from our main sequence {Sk}

∞

k=1 by deleting
one of its tile corners, has the property that the site animal associated with it is a tree.
This is a consequence of the fact that this sequence attains the upper bound for f(n).

In this chapter we have studied the maximum number of holes that a polyomino
can have. In the next chapter we study how many holes a typical polyomino is
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expected to have. In order to do so, we will give a more precise topological definition
of the topological structure of a polyomino and of a hole in a polyomino.
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Chapter 3

Asymptotic behavior of the
homology of random polyominoes

Percolation theory models on regular lattices, such as the square regular lattice, are
relevant in various areas of theoretical and experimental physics like material sci-
ence [30], thermodynamics [6], and statistical mechanics [4]. These models have in-
teresting critical phenomena at phase transitions. There are also several techniques
for making simulations and for doing computational experiments to explore them.

This gives importance to the study of the topological features, such as homology
groups, of the finite clusters of the percolation model on the regular square lattice of
the plane. These finite clusters correspond to polyominoes as we have defined them
in Chapter 2.

In this chapter we present the second set of contributions of this thesis. We es-
tablish the growth rate of the expected number of holes of polyominoes for these
families of distributions that are related to the percolation model on the plane and
for the uniform distribution. We prove that the expected number of holes grows lin-
early with respect to the number of tiles.

The precise statements of these results are stated in Theorem 3 and Theorem 5.
We prove these theorems in Section 3.2 and Section 3.4, respectively. Also, we exhibit
explicit constants for the upper and lower linear bounds in the uniform distribution
case in Corollary 5.

As far as we know, this is the first time that these problems have been studied
for percolation models, for the uniform distribution and for any other distributions
on regular lattices.

3.1 (Algebraic) Topological definition of polyominoes and holes

In this section we give a precise algebraic topological definition of polyominoes and
of the random variable that captures the number of holes in a polyomino. We are as-
suming that the reader knows how to construct, given a CW-complex, the sequence
of homology vector spaces over the field F2 = {0, 1} associated with the complex—
see [18].
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We are interested in defining this complex structure and the corresponding ho-
mology vector spaces because, intuitively, the ranks of these spaces capture the num-
ber of holes that a polyomino or a higher-dimensional polyform may have. For in-
stance, on the plane, the rank of the first homology group corresponds exactly with
the number of holes that a polyomino has. In what follows we provide the defini-
tions needed for constructing a CW-complex for any given polyomino.

It is possible to construct an infinite geometric CW-Complex on R2 from the
square lattice Z2 (this lattice can be seen as the square regular tessellation of the
plane or the infinite checkerboard defined in Chapter 2). Then, given a polyomino,
we can construct a subcomplex of this infinite cellular structure. To make these def-
initions more precise, we first give a cell-decomposition on R2:

• The set of 0-cells, denoted by X0, consists of all the points in the integer lattice
on the plane, i.e., X0 = Z2.

• The set of all 1-cells denoted by X1 is defined as the set of all closed segments
of length one between elements of X0 that are either parallel to the vector

−−−→
(1, 0)

or
−−−→
(0, 1).

• The set of all 2-cells denoted by X2 contain all closed squares with area 1 that
have as their boundary four 1-cells.

We can define an infinite CW-structure on R2 consisting of the filtration {X0,X1,X2}
and the infinite CW-complex on the plane consists of R2 endowed with this CW-
structure, which we denote by CW(Z2).

With this definition, for any given polyomino A we can construct a subcomplex
of CW(Z2). A is a (topological) subspace of R2 and A can be decomposed as the set
union of elements in X0, X1, and X2. This gives us a natural filtration of A by 0-cells,
1-cells, and 2-cells that we represent by A0, A1, and A2, respectively.

Not all subcomplexes of CW(Z2) correspond to a polyomino. A polyomino is a
pure 2-dimensional finite subcomplex of CW(Z2), with connected interior.

The site perimeter of a polyomino A, that we represent by persite(A), is the set
of 2-cells in CW(Z2) that share boundary with A. We will also use the notation
persite(A) to refer to the cardinality of this set of cells. It will be clear from the con-
text whether we are referring to the set of cells or its cardinality.

For each polyomino A we construct the sequence of homology vector spaces
over the field F2 and we denote them by {Hk(A)}

∞

k=0. The dimensions of these vector
spaces have the topological information that will allow us to count the number of
holes in A.

As usual, we represent by βi(A) the dimension of the finite i-th homology vector
space:

βi(A) := dim(Hi(A)).

These ranks are commonly referred as Betti numbers. The value β0(A) gives the
number of connected components in A that, in our case, is always equal to one be-
cause polyominoes are connected. As we have mentioned before, β1(A) coincides
with the number of holes in A if the holes are defined as in Chapter 2. Finally,
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βi(A) = 0 for all i > 1. This is not always the case for polyforms or other finite cell
structures defined in higher-dimension, regular lattices (tessellations).

We notice that if A and B are two polyominoes with m holes, then they are ho-
motopy equivalent (and in fact homotopy equivalent to a bouquet of m circles) in-
dependently of the number of tiles that they have. Hence, their homology vector
spaces are isomorphic, i.e, Hk(A) ∼= Hk(B) for all k ∈ N. This, in our case, reduces
to β1(A) = β1(B). Ifm ∈ N and n is fixed, the enumeration of all A ∈ An for which
β1(A) = m is an open problem.

From the values contained in Table 2.2.2, it is possible to compute the exact value
of E[β1] on each set An for all 1 ≤ n ≤ 28. For instance, the expectation is zero for
n ≤ 6.

From the information that is known [27], it is not possible to compute the exact
value of E[β1] for polyominoes with more than 28 tiles. Though, from Theorem 2
we can derive that, independently of the probability distribution defined on An, the
expectation of β1 grows at most linearly with respect to the number of tiles.

Lemma 10. For any natural number n and any probability distribution defined on the set
An, we have

E[β1] ≤ 1

2
n. (3.1)

Using the techniques that we present in Section 3.3, it is possible to improve this
upper bound. Before giving a lower bound for E[β1], we need to introduce new
notation, new concepts, and new techniques.

3.2 Asymptotic bounds of homology for uniform random poly-

ominoes

In this section we study the expected number of holes for random polyominoes.
More precisely, we prove that the expectation of the random variable β1, with re-
spect to the uniform distribution defined on An, grows linearly with respect to the
number of tiles.

From Lemma 10 we know that this is true for the upper bound of E[β1]. But this
is the extreme case as, intuitively, we expect that the majority of polyominoes do not
have maximally many holes or that they are far from having maximally many holes.

For example, in Figure 3.1 we show a typical polyomino with 50 tiles; the maxi-
mum number of holes in a polyomino with 50 tiles is at least 14, but this polyomino
only has one hole.

In the rest of this section we show that, for uniform distributed polyominoes,
E[β1] also has a lower bound that grows linearly with respect to the number of tiles
in a polyomino. This result, the main conclusion of this section, is stated in Theorem
3. An essential part of the proof of this theorem relies on Theorem 4 and Theorem B.
Theorem B was proved by N. Madras in [23]. We have used and adapted the tech-
niques and ideas that he used to prove this result for the special case of the uniform
distribution given in Theorem 4.
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FIGURE 3.1: A uniform random polyomino with 50 tiles and only one
hole. The maximum number of holes that a polyomino with 50 tiles
can have is at least 14. This polyomino was sampled using a Markov
chain Monte Carlo Metropolis algorithm that we study and define in

detail in Chapter A.

As we will see in Section 3.3, Theorem B applies to more general structures than
the square lattice and polyominoes with holes. It applies for regular patterns or sub-
graphs of regular lattices of Rn (in this same subsection we give precise definitions
of regular patterns and regular lattices).

Although Theorem B is not stated for topological structures such as CW-complexes,
we were able to use these techniques for proving our results using the useful graph
representation of polyominoes by its dual graph also known in the literature as the
site animal (remember from Section 2.6 that a dual graph of a polyomino (site ani-
mal) is constructed by placing vertices on the squares of a polyomino and connecting
any two vertices if their corresponding squares share an edge).

These techniques could also be applied to more general topological structures.
This is certainly the case for cubical complexes in higher dimensions and other poly-
forms in any regular lattice of Rn. Thus, the results that we prove in this section are
also true in these other general cases. And, it is also possible to find exact bounds
for the uniform distribution and the percolation distributions defined on polyforms
of a given number of tiles on these regular lattices.

The main result of this section is the following.

Theorem 3. With the uniform distribution defined on An, there exist constants C1 and C2
(not depending on n) such that

C1 · n ≤ E[β1] ≤ C2 · n, (3.2)
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for sufficiently large values of n.

From Lemma 10 we can make for any natural number n the constant C2 = 1
2

in
inequality (3.2) independently of the underlying distribution. Thus, we already have
proved that the upper bound part of Theorem 3 holds for the uniform distribution.
In what remains, we prove the lower bound part of this theorem.

The idea behind the proof of the lower bound part of Theorem 3 relies on the
intuitive fact that the square configuration in a certain region of a random poly-
omino should be independent of the square configuration of another region of the
same polyomino, provided that there is enough distance between the two non-
overlapping regions.

More specifically, we will show that the pattern P depicted in Figure 3.2 oc-
curs a fraction-number-of-the-tiles times in large polyominoes asymptotically al-
most surely.

P =

FIGURE 3.2: A pattern with one hole and four tiles.

The pattern P covers an area of five tiles. Observe that this pattern is not a poly-
omino because it does not have a connected interior. But, it captures the local struc-
ture that is necessary and sufficient to have one hole with area of one.

Theorem 4 (The Pattern Theorem on the uniform distribution case). Given a positive
real numberm, denote by Enm the set of all polyominoes with n tiles and at mostm copies of
P, i.e.

Enm := {a ∈ An | a contains at most m translations of P}.

Let λ = limn→∞ | An |
1
n . Then, there exists ε > 0 such that

lim sup
n→∞

| Enεn |
1
n< λ. (3.3)

Theorem 4 assures that there exists a fixed ε > 0 such that the cardinality of the
set of polyominoes that have at most εn holes with an area of one and n tiles grows
exponentially slower than the total number of polyominoes with n tiles. We observe
that the set of n-ominoes without holes is a subset of Enεn. As we have mentioned
before, this theorem (and the proof that we give below) is an adaptation of Theorem
B (and its proof) to the uniform distribution, the pattern P, and polyominoes seen as
site animals.

We mentioned in Chapter 1 that Klarner’s constant λ exists but that its exact
value is unknown. We will also use in the proof of Theorem 4 that the sequence
| An | is an increasing sequence.
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3.2.1 Proof of Theorem 4

In what follows we construct the structures, establish useful notation, and give pre-
liminary results that we use to prove Theorem 4. The two preliminary results are
Lemma 11 and Lemma 12 that we state and prove bellow. Proving these lemmas in
full detail allows us to compute exact values of C1 for the inequality in Theorem 3.

We enclose P in the smallest tile configuration that will allow us to place the
configuration at any location on a polyomino without disconnecting the polyomino.
The configurationD that we show in Figure 3.3 has this property. The tile in black is
part of the configuration. We use this black tile to have a canonical way to place the
pattern D in a particular tile of a polyomino.

Let A be an n-omino. If we place D at any tile on A, replacing the local configu-
ration of A with this placement, then A is transformed into a polyomino B with an
m number of tiles. Clearly, n− 1 ≤ m ≤ n+ 7. We define κ = 7. Then we have
n− κ ≤ m ≤ n+ κ. Thus, if we place s non-overlapping copies of D on A, we get a
new polyomino withm number of tiles such that n− sκ ≤ m ≤ n+ sκ.

D =

FIGURE 3.3: ConfigurationD that contains P. If we placeD on a tile t
of a polyominoA by placing the black tile ofD on t, then the structure
ofD assures that we get another polyomino. After placingD onAwe

could get a polyomino with a different number of tiles.

Let α be a positive constant such that: for any n and any n-omino A there exists
a set of tiles inAwith at least �αn
 elements, such that if we place �αn
 copies of the
configuration D (one in each one of these �αn
 tiles) then these copies of D placed
in A are non-overlapping.

FIGURE 3.4: The region enclosed by the big square covers an area of
five-by-five tiles. A sufficient restriction for placing another copy of
D in such a way that it does not intersect this copy is that it has to be
placed outside this enclosed region. This structure allow us to define

α = 1/25.

One possible value for α is 1/25 because, if we place D at some location in a
polyomino and we place another copy of D at any tile of the polyomino that is not
included in the five-by-five square depicted in Figure 3.4, then the two copies of D
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do not overlap.

Fix a number δ (we will choose a specific value for δ later in the proof) such that
0 < δ < α. We know that there exists a set T(A) of different tiles inAwith cardinality
�αn
 such that if we place �αn
 copies of the configuration D (one in each one of
these �αn
 tiles) then these copies ofD placed inA are non-overlapping. Now, from
T(A) we select an ordered tuple W = (w1, ...,w�δn
) with �δn
 tiles. Then, we con-
struct �δn
 polyominoes as follows: let A0 = A and Ai be the polyomino obtained
after placing the pattern D on the wi tile in the polyomino Ai−1 for 1 ≤ i ≤ �δn
.
Let H = A�δn
. We observe that H has between n− �δn
κ and n+ �δn
κ tiles. For
an n-omino A we have constructed a triple (A,H,W) by choosing a particular T(A)
and an ordered �δn
-tupleW ⊂ T(A). It is important to notice that the set of tilesW
in A that we have selected are also tiles in H.

Let ε > 0 (we will choose ε to be δ/2 later in the proof) and let H be the col-
lection of all triples (A,H,W), constructed as we described before but restricting to
all A ∈ Ennε (recall that if A ∈ Ennε then A has at most �εn
 translations of the pat-
tern P). Denote by HH the set of all polyominoes H such that there exists a triple
(A,H,W) ∈ H. Given two polyominoes A ∈ Enεn and H ∈ HH we say that A is
associated to H if there exists a triple (A,H,W) in the set H.

Clearly we can construct more than one triple (A,H,W) for any given polyomino
A ∈ Enεn. In particular, once we fix A and the set T(A), there are

�αn
!
(�αn
− �δn
)! , (3.4)

different ways of choosing W from T(A) (for some polyominoes there could also be
more than one way to choose the set T(A)).

Lemma 11. Let Enεn be the set of all n-ominoes that have at most �εn
 copies of P. Then we
have

| H |≥| Enεn |
�αn
!

(�αn
− �δn
)! . (3.5)

Proof. For any elementA in Enεn we know that there exists at least one set T(A) of tiles
in A with �αn
 different tiles such that if we place �αn
 copies of the configuration
D (one in each one of these �αn
 tiles) then these copies of D placed in A are non-
overlapping. Considering all possible ways of selecting the ordered sequence W =
(w1, ...,w�δn
), from (3.4) we conclude (3.5).

Observe that Lemma 11 is giving us an upper bound for | Enεn |. This is conve-
nient for proving inequality (3.3), but we still need more information on this upper
bound before we are able to prove Theorem 4. Our next goal is to get an upper
bound for | H | that will give us the upper bound that we want for | Enεn |.

For a fixed H ∈ HH denote by H(H,·) the set of all possible ordered tuples of tiles
W = (w1, ...,w�δn
) such that there exists an A ∈ Enεn with (A,H,W) ∈ H. Now,
given a W ∈ H(H,·), we denote by H(·,H,W) the set of all polyominoes A ∈ Enεn such
that (A,H,W) is in H. In what follows we find an upper bound for the cardinality
of the sets H(H,·) and H(·,H,W) for any H ∈ HH and all possibles tuplesW ∈ H(H,·).
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We represent by q the number of possible ways in which P and D could inter-
sect without covering the hole at D or P. By construction, P is fully contained in D
in a unique way (we are only allowed to place a configuration in a polyomino by
translations). Also, there are 12 other possible intersections of P and D. The tile at
the right-most column of P could intersect D in any tile of D located in its left-most
column. Each one of the four tiles of P has an analogous way of intersectingD. Then
q = 13.

Thus, for any n-omino A, if A has k translates of P, then we can be sure that A1,
which is obtained from A after placing D on a specific tile in A, has at most k+ q
translates of P. From this fact and because A ∈ Enεn, using a recursive argument,
if H ∈ HH, then H has at most �εn
 + q�δn
 translates of P. This implies that if
H ∈ HH and we want to find an upper bound for the cardinality of the set of possible
�δn
-tuples of locations at which we have placed copies of D for getting H from an
A ∈ Enεn, i.e. an upper bound for | H(H,·) |, we have that

| H(H,·) |≤ (�εn
+ q�δn
)!
(�εn
+ q�δn
− �δn
)! , (3.6)

for any fixed H ∈ H.

Let Z be the number of all square configurations that are subsets of the configu-
ration obtained by adding the middle tile to D (the complete three-by-three square
configuration). Clearly Z = 29. Then, for a polyomino H ∈ HH and an element
W ∈ H(H,·) there exist at most Z�δn
 elements in H(·,H,W). We have all the ingredients
that we need to give a useful upper bound for | H |.

Lemma 12. Let Enm be as in Theorem 4, and let H be the collection all triples of the form
(A,H,W) with A ∈ Enεn. Then we have

| H |≤ (n+ 2κ�δn
) | An+κ�δn
 |
�εn
+ q�δn
!

(�εn
+ q�δn
− �δn
)!Z
�δn
. (3.7)

Proof. (Lemma 12) For a fixed H ∈ HH let SH be the set of all triples of the form
(A,H,W) such that (A,H,W) ∈ H. From the previous discussion about Z and in-
equality (3.6) we get

| H | ≤
∑
H∈HH

SH

≤
∑
H∈HH

∑
W∈H(H,·)

| H(·,H,W) |

≤
∑
H∈HH

(�εn
+ q�δn
)!
(�εn
+ q�δn
− �δn
)!Z

�δn
,

which implies

| H |≤| HH |
(�εn
+ q�δn
)!

(�εn
+ q�δn
− �δn
)!Z
�δn
. (3.8)



3.2. Asymptotic bounds of homology for uniform random polyominoes 39

Observing that any H ∈ HH must be anm-omino with n− �δn
κ ≤ m ≤ n+ �δn
κ
and that the sequence | An | is increasing, we get

| HH |≤
j=n+κ�δn
∑
j=n−κ�δn


| Aj |≤ (n+ 2κ�δn
) | An+κ�δn
 | . (3.9)

Finally, from (3.8) and (3.9) we conclude that (3.7) holds true.

We have all the ingredients that we need for the proof of Theorem 4 and comput-
ing a numeric value for ε in inequality (3.3).

Proof. (Theorem 4) Combining inequalities (3.5) and (3.7), we have

(n+ 2κ�δn
) | An+κ�δn
 |
(�εn
+ q�δn
)!(�αn
− �δn
)!
(�εn
+ q�δn
− �δn
)!�αn
! Z

�δn
 ≥| Enεn | . (3.10)

Then, taking n-th roots on both sides of inequality (3.10), using Stirling’s formula,
making n→ ∞, and substituting

λ1+κδ = lim
n→∞

[
| An(1+κδ) |

1
n(1+κδ)

]1+κδ
,

we get

λ1+κδZδ
(ε+ qδ)ε+qδ(α− δ)α−δ

(ε+ qδ− δ)(ε+qδ−δ)αα
≥ lim sup

n→∞

| Enεn |
1
n . (3.11)

Because 0 < δ < α there exists a t ∈ (0, 1), which we specify later, such that δ = tα.
Also, we let ε = δ/2. Then, from inequality (3.11) we obtain

λκδZδ

(
(1
2
+ q)

1
2+q

(1
2
+ q− 1)

1
2+q−1

)δ
(tt(1− t)1−t)α ≥ lim supn→∞

| Enεn |
1
n

λ
. (3.12)

Now, we carefully choose the value of t to allow us conclude the proof. Let

Q = λκZ
(1
2
+ q)

1
2+q

(q− 1
2
)q−

1
2

. (3.13)

Then we can rewrite inequality (3.12) as

(tt(1− t)1−tQt)α ≥ lim supn→∞
| Enεn |

1
n

λ
. (3.14)

Inequality (3.14) holds for any t ∈ (0, 1). By setting t = 1/(1+Q) we get

(
Q

1+Q

)α
≥ lim supn→∞

| Enεn |
1
n

λ
.

Finally, because Q/(1+Q) < 1we conclude that

λ > lim sup
n→∞

| Enεn |
1
n .
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Polyominoes with n tiles without holes form a subset of Enεn (the set of all poly-
ominoes that have at most εn holes with an area of one and n tiles). Therefore, we
get the following corollary from Theorem 4.

Corollary 3. The number of polyominoes with holes grows exponentially faster than the
number of polyominoes without holes.

Now, we can restate these results in terms of the probability of the event of a
polyomino with n tiles having more than εn holes.

Corollary 4. Let Hεn be the event that an n-omino has more than εn holes. Then

lim
n→∞

P[Hεn] = 1. (3.15)

Proof. For any natural number n we have (Enεn)
C ⊂ Hεn, which implies

P[Hεn] ≥ P[(Enεn)
C] = 1− P[Enεn] = 1−

| Enεn |

| An |
. (3.16)

From Theorem 4 we know that the cardinality of the set Enεn grows exponentially
slower than the cardinality of the set An. Then, we conclude the proof by making
n→ ∞ in (3.16).

3.2.2 Proof of Theorem 3

Now, we complete the proof for Theorem 3 by giving a lower bound for E[β1].

Proof. (Theorem 3) Let μ = lim supn→∞
| Enεn |

1
n . We know from Theorem 4 that if

ψ := (μ/λ) then ψ < 1. This implies that there exists a natural number n0 such that
for any n ∈ N if n > n0 then

P[(Enεn)] ≤ ψn <
1

2
. (3.17)

Using this bound and Corollary 4, we get for any n > n0 that

E[β1] =

∞∑
k=0

k · P[β1 = k]

=

�εn
∑
k=0

k · P[β1 = k] +

∞∑
k=�εn
+1

k · P[β1 = k]

≥ εn

∞∑
k=�εn
+1

P[β1 = k]

≥ εnP[β1 ≥ �εn
+ 1]
≥ εnP[Hεn]

≥ εn(
1

2
).

Thus, E[β1] ≥ (1/2)εn for any n > n0.
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Finally, we compute an exact value for C1 in Theorem 3 by finding the value of ε
in Theorem 4. Notice that we already gave a value for C2 in Lemma 10.

Corollary 5. With the uniform distribution defined on An, there exists a natural number
n0 such that for any n > n0

(2.65× 10−11) · n ≤ E[β1] <
1

2
· n. (3.18)

The upper bound can be improved by applying the same techniques used to
prove Theorem 4 for the pattern P′ depicted in Figure 3.5. The reason is that if a
polyomino A has ε′n non overlapping copies of P′ in its configuration, then the
maximum possible number of holes in A is reduced by at least ε′n.

P′ =

FIGURE 3.5: The pattern P′. If a polyomino has this configuration,
then it will not reach the maximum number of holes.

For this pattern P′, the proof is almost the same as the one given for the pattern
P in Theorem 4. The reason is that the corresponding configuration for P′ is D′ (for
P is the configuration D) and D and D′ only differ by one tile. This changes only
the value of κ (now κ = 8 instead of κ = 7) and the value of the constant q (now
q = 25 instead of q = 13) is the value of the constant Q that is defined in (3.13).
After computing the value of ε for this pattern P′, we get the next improvement in
the constants given in Corollary 5.

Corollary 6 (An improvement to Corollary 5). With the uniform distribution defined on
An, there exists a natural number n0 such that for any n > n0

(2.65× 10−11) · n ≤ E[β1] <

(
1

2
− (3.03× 10−12)

)
· n. (3.19)

Improving these bounds in a significant way will require different techniques
than those we have used for proving Theorem 4. But, by performing simulations of
random polyominoes, it is possible to conjecture a better value for C1 in the lower
bound for E[β1], to estimate a better value for C2, or even conjecture a possible value
of the limit

lim
n→∞

E[β1]

n
,

if the limit exists. In Appendix A we study a method for sampling random polyomi-
noes with distributions converging to the uniform distribution and to the percolation
distributions using Markov chain Monte Carlo Metropolis algorithms.

Theorem 3 holds for more general square configurations than P that fulfill certain
regularity properties. Also, it is true for other underlying probability distributions
defined on An and to polyforms defined in other geometric regular lattices different
from Z2 in the plane and in other dimensions.
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Before proving that E[β1] also has upper and lower bounds that grow linearly
with respect to the number of tiles in a polyomino for the percolation distributions
defined on An, we state in the next section Theorem B. As we mentioned before, this
theorem is a generalization of Theorem 3.

3.3 A Pattern Theorem for Lattice Clusters

We begin by defining all the concepts that are involved in Theorem B. In the process,
we use the special case of polyominoes in the regular square lattice as an example of
the more general definitions.

Polyominoes are defined in the infinite square regular lattice on Z2. This lattice
is an example of a more general family of euclidean space lattices with nice, regular,
geometric properties on which the pattern theorem holds. A d-dimensional lattice
is any periodic, locally-finite embedding in Rd of a connected infinite graph. By
a locally-finite embedding we mean that any vertex has finite degree and that any
bounded subset of Rd contains a finite number of vertices. With this definition, any
locally-finite tessellation of Rd is a d-dimensional lattice.

If L is a d-dimensional lattice, we denote the set of its vertices by S(L) and the set
of its edges by B(L). It is important to notice that both S(L) and B(L) are subsets of
Rd. We will refer to the elements of S(L) as the sites of L and to the elements of B(L)
as bonds of L. Given any subset G ⊂ L, we denote by S(G) and B(G) the set of sites
and the set of bonds of G respectively.

It is clear that in the d-dimensional square regular lattice (referred to for the rest
of this section as Zd) it is possible to translate any subset of sites by a vector with
integer entries and get another subset of sites in Zd. The same is true for any subset
of bonds in Zd. This does not hold if the translation vector has a non-integer entry.
Motivated by this translation characterization of the lattice Z2, we define for any
d-dimensional lattice L the translation invariant set S∗(L) of L as all the vectors in Rd

that leave L invariant:
S∗(L) := {u ∈ Rd | L+ u = L}.

The set S∗(L) is a group with 0 as the identity element (the vector with all entries
equal to zero). Assuming that 0 is a site in L, we get that S∗(L) is a subset of S(L). In
the case of Zd, these sets are the same; that is, S∗(L) = S(L).

The next step is to define the objects that we want to study in L. In Z2 we have
been studying polyominoes. For each n ∈ N we have defined a set An containing
all the polyominoes of size n; in the set An, we have only included polyominoes that
have their lower, left-most column site at the origin. This guarantees that there is a
unique element in An representing all polyominoes of the same shape that are equal
under any integer translation in the plane.

In any lattice L, a family of clusters is a sequence {Cn}∞n=1 of subsets of finite
subgraphs of L such that

• Cn ∩ Cm = ∅ whenever n �= m, and

• for every n ∈ N, if x,y ∈ Cn, then x is not possible to obtain from y under any
s ∈ S(L∗). In other words, as we have done with the set of polyominoes An,



3.3. A Pattern Theorem for Lattice Clusters 43

we only include in Cn one cluster representing all clusters that are equal under
any translation contained in S∗(L).

We represent by C<∞ the set of all clusters

C<∞ :=
∞⋃
n=1

Cn;

and we refer to the elements of Cn as clusters of size n.

In the previous sections of this chapter we have been studying the asymptotic
topological properties of A<∞ with the uniform distribution defined on each An.
The uniform distribution is related to the function w : A<∞ → (0,∞) that assigns
to each cluster A ∈ A<∞ the value w(A) = 1. Intuitively, we can think of w as a
function that is assigning a weight to each cluster contained in A<∞.

Definition 2. Let L be a lattice with clusters C<∞ and w : C<∞ → (0,∞). For any given
subset U of C<∞ define

W(U) =
∑
U∈U

w(U). (3.20)

We denote W(Cn) as Wn for any natural number n. We say that w : C<∞ → (0,∞) is a
weight function on C<∞ if it has the following two properties:

1) For each natural numberm there exists a positive real number αm such that

1

αm
w(A) ≤ w(B) ≤ αmw(A), (3.21)

whenever A,B ∈ Cn such that they differ by at mostm sites and bonds.

2) The limit
lim sup
n→∞

(Wn)
1
n (3.22)

exists and is finite.

In practice, one important characteristic to keep in mind when defining a weight
function is that it should be invariant under translation. This means that, if we want
to naturally extend it to all clusters in L, it should assign the same value to any two
congruent clusters (under translations by elements of S∗(L)) in the lattice.

Given any weight function we can construct a probability distribution on each
Cn, and vice versa, by defining the probability of the singletons as

P[{A}] =
w(A)∑
B∈Cn w(B)

=
w(A)

Wn
, (3.23)

for any A ∈ Cn.

Finally, we give the properties that a pattern in a lattice L needs to fulfill in order
to be used in The Pattern Theorem. Let P1 �= ∅ and P2 be two finite, disjoint subsets
of the lattice L. We think of P1 and P2 as in a fixed location with respect to each other.
If C ∈ C<∞ is a cluster, then we say that C contains P if C contains P1 and does not
contain P2. In Figure 3.6 we show a possible pair P1 and P2 that generates the pattern
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P that we used in Theorem 4 and that we will use in Theorem 6.

P1 = P2 = P =

FIGURE 3.6: P is a pattern with one hole and 4 tiles. In the ordered
pair P = (P1,P2), the tile configuration P1 contains the sites that we
want to be present in a cluster and P2 contains the sites that we do

not want to be present in a cluster.

We refer to the ordered pair P = (P1,P2) as the pattern P.

Definition 3. Given a pattern P = (P1,P2), we say that P is a proper pattern if it has the
following two properties:

1 For any n ∈ N there exists a cluster C ∈ Cn such that P is contained in C.

2 There exists a finite setD of sites and bonds such that, for every cluster C ∈ C<∞ and
every site s in C, there exists another cluster C′ and a translation vector u ∈ S∗(L)
such that s ∈ D+u, C′ contains P+u, and C′ has the same structure of C outside of
D+ u.

The pattern P, depicted in Figure 3.6, has these two properties. The configura-
tion D corresponding to this pattern is depicted in Figure 3.3. As we have seen,
this configuration plays a key role in the proof of Theorem 4 and for computing the
constants that we give in Corollary 5 and Corollary 6. For any given pattern P, the
goal is to find its respective configuration D in such a way that it has the minimum
possible sites and bonds but that it has the two properties mentioned above.

Define for all natural numbers n andm the set of clusters

Enm := {a ∈ Cn | a contains at most m translates of P},

and remember that we are assuming that the limit

lim sup
n→∞

(Wn)
1
n = λ,

exists (because w is a weight function). We have defined all the concepts that we
need to state The Pattern Theorem.

Theorem B (The Pattern Theorem, M. Madras 1999). Let L be a d−dimensional lattice
with a family of lattice clusters C<∞ and P a proper pattern in this lattice. If w is a weight
function on C<∞, then there exists an ε > 0 such that

lim sup
n→∞

[W(Enm)]
1
n < λ. (3.24)

For the proof of this theorem we refer the reader to [23]. We use Theorem B in
the proof of Theorem 5, that we state in the next section, as we have used Theorem
4 to prove Theorem 3. First, we give a precise definition of percolation distributions
over An.
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3.4 Homology of percolation distributed polyominoes

The percolation site model in the regular square lattice on the plane is described as
follows. Choose a probability p ∈ (0, 1); then, include each one of the 2-cells of
CW(Z2) with probability p and exclude it with probability 1− p. In Figure 3.7, we
show a simulation of the percolation model with p = 1/2.

FIGURE 3.7: Percolation model over CW(Z2) with p = .5. The com-
ponents with connected interiors are polyominoes. In percolation the-
ory they are refer more commonly as lattice animals or percolation

clusters.

A relevant feature of this discrete percolation model is that every microscopic
configuration can be separated unambiguously into clusters with connected interi-
ors. These clusters are polyominoes. In the literature, these clusters are more com-
monly referred to as lattice animals. As we have mentioned before, (site) lattice
animals are in one-to-one correspondence with polyominoes, but lattice animals do
not capture the topology of polyominoes.
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One of the most studied properties of this model is the probability threshold for
the appearance of an infinite connected component. For every p ∈ (0, 1) the proba-
bility of the event that an infinite polyomino exists in a realization of this percolation
model is either zero or one as a consequence of Kolmogorov’s zero-one law. Also, a
threshold for this event is known. There exists a probability pc ∈ (0, 1) such that for
any p < pc with a probability of one there does not exist an infinite polyomino in a
realization of this percolation model and, if p > pc with probability one, there exists
such an infinite polyomino (lattice animal).

Since the 1970s, different theoretical results and computational experiments of
the percolation model on the regular square lattice suggested that there was a quali-
tative difference in the finite polyominoes in this percolation model above and below
the threshold pc. Some of these properties of the finite clusters (polyominoes) that
they studied using computational experiments on this percolation model were den-
sity profile, radius, and perimeter [29]. In Figure 3.8, we show a polyomino sampled
using a Metropolis–Hasting algorithm that converges to the probability distribution
on A50 associated to the percolation model taking p = pc. We analyze the properties
of this algorithm in Appendix A.

FIGURE 3.8: A polyomino that we sampled from the percolation dis-
tribution at criticality p = pc by implementing and running a Monte
Carlo Markov chain Metropolis–Hasting algorithm. This polyomino
has 50 tiles and four holes. It is showing a qualitative difference with
respect to the polyomino that we have sampled with the uniform dis-
tribution that is shown in Figure 3.1. We give more details about this

sampling method in Appendix A.

In what follows we give a precise definition of the probability distributions re-
lated to this percolation model.

Fix a natural number n ∈ N and a probability p ∈ (1, 0). We define the distri-
bution πp as the finite probability distribution on An that assigns to each element
A ∈ An, with site perimeter tA = persite(A), the probability

πp(A) =
pn(1− p)tA

z
, with z =

∑
B∈An

pn(1− p)tB . (3.25)
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This percolation distribution assigns different probabilities to polyominoes with
different site perimeters. Thus, there does not exist a probability p ∈ (0, 1) such that
the distribution πp is equal to the uniform distribution defined on An—see Figure
3.9. However, the uniform distribution is related to the percolation model distribu-
tions because as p→ 0 the distribution πp converges to the uniform distribution.

A = B =

FIGURE 3.9: The percolation distribution πp assigns different prob-
abilities to polyominoes with different site perimeters. Therefore,
these percolation distributions cannot be equal to the uniform dis-
tribution. For example, if p = 1/2, then z · πp(A) = 1/16384 and

z · πp(B) = 1/4094, with z defined as in (3.25).

We proved in Theorem 3 that with respect to the uniform distribution E[β1]
grows linearly with respect to the number of tiles in a polyomino. This result also
holds for the percolation model distributions defined on An. This is precisely stated
in the next theorem.

Theorem 5. Let p ∈ (0, 1). With the percolation distribution πp defined on An, there exist
constants C1 and C2, not depending on n but depending on p, such that

C1 · n ≤ E[β1] ≤ C2 · n.

For proving this result we follow an analogous proof to the one that we used
to prove Theorem 3. We want to apply The Pattern Theorem in its more general
version given in Theorem B. Hence, for each distribution πp, we need to define its
related weight function wp : A<∞ → (0, 1) satisfying properties (3.22) and (3.21)
given in the previous subsection.

By substituting in (3.23) the probability that the distribution πp assigns to a poly-
omino A ∈ A<∞ with n tiles and site perimeter tA = persite(A), we define the value
of the function wp, corresponding to πp, as

wp(A) := p
n(1− p)tA . (3.26)

For any given subset A ⊂ A<∞ we represent

Wp(A) =
∑
A∈A

wp(A), (3.27)

and we denoteWp(An) asWp(n) for any natural number n.

It is clear from its definition that the function wp is invariant under translations
by any vector with integer entries in the plane because the site perimeter of a poly-
omino does not change if we translate a polyomino on the plane. The next lemma
[23] states that the functionwp has properties (3.22) and (3.21). That is,wp is a weight
function defined on A<∞.
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Lemma A. Let p ∈ (1, 0) and wp : A<∞ → (0,∞) the function defined as in (3.26). Then
wp is a weight function on A<∞.

From Lemma A and Theorem B, we get the following result.

Theorem 6 (The Pattern Theorem: for the percolation model distribution). Let λp =

limn→∞Wp(n)
1
n . Then, there exists ε > 0 such that

lim sup
n→∞

|W(Enεn) |
1
n< λ. (3.28)

Theorem 5 can be proved using Theorem 6 by following an analogous argument
to the one that we used to prove Theorem 3 from Theorem 4. Thus, as in the uniform
distribution case, we have proved the existence of linear upper and lower bounds
for the expected number of holes in polyominoes if the underlying probability dis-
tribution is πp.

In the next chapter we define and study another probability distribution on the
set of polyominoes such that, based on the computational experiments that we have
performed, the expectation E[β1] does not behave linearly with respect to the num-
ber of tiles in a polyomino. This distribution is related to a stochastic process defined
over the sequence An. We will use topological data analysis techniques to analyze
the behavior of the variable β1 as the number of tiles increases in this process.
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Chapter 4

Stochastic growth process with
polyominoes

In this chapter we study and perform computational experiments on the persistent
homology and some geometric features related to the homology of a stochastic pro-
cess defined on the set of all polyominoes. This process corresponds to a cell growth
model called the Eden Growth Model (EGM). It can be described as follows [9, 10]:
Start with a polyomino having only one tile and make it grow by adding one tile at
a time uniformly at random to its site perimeter, with the restriction that the newly
added tile needs to share at least one side with any other tile already present in the
polyomino.

Eden mentioned in [10] that the first person to model the cell growth process
from a mathematical point of view was A.M. Turing [31] in 1952. However, Turing’s
cell growth model is not based on polyominoes as, for the most part, he used a one-
dimensional structure to study the cell growth problem.

Also, as highlighted in the recent survey paper [1], the EGM corresponds to a
site First Passage Percolation model in the regular square lattice in the plane af-
ter applying the right time-change (where the time is measured by the number of
added tiles). In a personal conversation with one of the authors of [1], A. Auffinger,
at ICERM (Brown, University) in Fall 2016, he mentioned that the evolution of the
topology of the EGM measured by its homology has not been studied yet and that
the same was true for any of the First Passage Percolation models.

This emphasizes the relevance of our third set of contributions that we present
in this chapter, which consists of importing from stochastic topology and topologi-
cal data analysis new techniques to study the topological evolution of First Passage
Percolation models. Also, in topological data analysis, the persistent homology has
not been used to measure the evolution of the homology and geometric properties
related to the homology of a stochastic process defined over polyforms in regular
lattices as we do in this thesis.

In Section 4.3 we characterize—see Theorem 7—the possible change in the rank
of the first homology group for the stochastic process defined by the EGM. This al-
lowed us to design and implement a new algorithm that computes the persistent
homology associated to this stochastic process at each time and that keeps track of
geometric features of the homology of the process. We give a precise description of
this algorithm in Section 4.4.
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We present and analyze the results of the computational experiments that we
have made with this algorithm in Section 4.5. One conjecture that we have, based on
these experiments, is about the asymptotic behavior of the number of holes.

Conjecture 2. Let βt1 be the random variable that measures the rank of the first homology
group of the EGM stochastic process at time t. Then for sufficiently large values of t,

C1
α
√
t ≤ E[βt1] ≤ C2

α
√
t, (4.1)

for some constants C1,C2 > 0 and α ≥ 1
2
. We suspect that α = .5, C1 > 1, and C2 < 1.5.

4.1 Preliminary definitions and notation

Remember that polyominoes are subsets with connected interiors of R2 that are
formed by the closed tiles of the infinite checkerboard. We are considering these
tiles to have an area of 1 and their vertices to be the elements of the set

Z2 := {(x,y) ∈ R2 | n,m ∈ Z}.

Given two polyominoes, A ∈ An and B ∈ Am, we say that A is a subpolyomino
of B if A ⊂ B as a subset of R2, and we say that A is a related subpolyomino of B if
there exists a polyomino A′ ∈ An such that A ∼ A′ and A′ is a subpolyomino of B.

By the canonical closed unit square we refer to the polyomino given by the square
of area 1 with vertices at points (0, 0), (1, 0), (0, 1), and (1, 1). We will use the variable
t for measuring the time of the EGM stochastic process. This time t is the same as
the number of tiles that the EGM has at each time.

Polyomino B Polyomino A

FIGURE 4.1: In both polyominoes the yellow square represents the
canonical unit square. Polyomino A is a subpolyomino of B. If we
place the canonical unit square of only one of the polyominoes on
a different gray tile, then it is no longer true that polyomino A is a

subpolyomino of B.

We denote the area of a polyominoA by a(A). Then, a(A) = n ifA is ann-omino.
We also want to measure the area covered by the holes of a polyomino. We denote
by ah(A) the total area covered by all the holes in A and by amaxh (A) the maximum
area over all holes in A. The number of holes with area m ∈ N in a polyomino will
be denoted by amh (A).

4.2 (Algebraic) Topological definition of the EGM

With the definitions given in Section 3.1, we can define the stochastic process of the
EGM from an algebraic topological point of view as follows.
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Definition 4. We define the EGM stochastic process as the sequence G = {Gt} of random
variables such that each Gt takes values in the set of all polyominoes (on CW(Z2)) with
t+ 1 2-cells, such that

a) G0 is the subcomplex defined by the canonical closed unit square.

b) G1 selects uniformly at random among all the polyominoes that have as subcomplex
G0 and have two 2-cells.

c) In general, for all t > 1, Gt selects uniformly at random among all the polyominoes
that have as subcomplex Gt and that have t 2-cells.

Every polyominoA can be regarded as a planar graph that we represent byG(A)
embedded in R2 withA0 as the set of all vertices ofG(A) andA1 as the set of all edges
ofG(A). The faces ofG(A) contain the elements ofA2, the infinite face, and the faces
formed by the holes contained in A that will exist whenever A is not simply con-
nected. We denote by v(A), e(A), and f(A) the cardinalities of these sets of vertices,
edges, and faces of G(A), respectively.

It is important to notice that this planar graph G(A) associated to a polyomino
A is different from the planar dual graph and the site animal (which is also a graph)
defined in Section 2.6. Also, we are using a different meaning for the function f
from the one that we used in Chapter 2. But, fear not, because they have a different
domain.

4.3 Behavior of β1 of the EGM

Euler’s formula for planar graphs gives a relation between the vertices, edges and
faces of a planar graph G embedded in R2. It states that the number of vertices, mi-
nus the number of edges, plus the number of faces of G (including the infinite face),
equals two for any possible injective embedding of G in the plane.

Then, as a consequence of Euler’s formula, for all polyominoes A ∈ An we have
v(A) − e(A) + f(A) = 2, which implies v(A) − e(A) + (n+ β1(A) + 1) = 2. Finally,
we get the equation

β1(A) = e(A) −n− v(A) + 1. (4.2)

Equation (4.2) and Lemma 4.3 are important ingredients for the algorithm that
we designed and implemented for computing βt1(Gt) in simulations of the EGM as
defined in Definition 4 above. For stating in a more precise way what topological
information we want to measure in the EGM simulations, we need first to establish
the notation we are going to use.

For each simulation {Gt(ω)} of the EGM stochastic process, we can construct
the sequence of random variables β0β0β0 =β

0
0,β1

0,β2
0..., and β1β1β1 = β01,β

1
1,β

2
1..., where βti =

dim[Hi(Gt(ω))] for 0 ≤ i ≤ 1, and 0 ≤ t ≤ ∞. All other sequences corresponding
to higher dimensional homology groups are trivial because our CW-complexes are
embedded in R2. We remind the reader that for each polyomino A the sequence of
homology vector spaces over the field F2 is denoted by {Hi(A)}

∞

i=0. The dimensions
of these vector spaces have the topological information that allows us to count the
number of holes in A.
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Because at each time Gt has only one component, P[βt0(Gt) = 1] is equal to 1
for all t ∈ N. This means that the topological information of the EGM process is
contained in the sequence β1β1β1 = β01,β

1
1,β

2
1.... Hence, whenever possible, for the rest

of this chapter, we will suppress the superscript t from the random variables βt1 and
use the notation β1.

We have observed in Chapter 2 that the set of polyominoes (or polycomplexes),
with less than 7 tiles and at least one hole, is empty. Then, for all 0 ≤ i ≤ 6

P[β1(Gi) = 0] = 1.

If the same constructions that we have made for CW(Z2) are made for the d-
dimensional cubical lattice Zd, then the sequences corresponding to all homology
groups of dimensions 0 ≤ k ≤ d− 1 will keep track of all the interesting changes of
the topology of the stochastic process (again, Gt having only one component at each
t).

In the following theorem we give a characterization of the possible differences
between two consecutive elements of β1β1β1.

Theorem 7. Letβ1β1β1 be obtained as an outcome of a simulation of the EGM stochastic process.
Then, for all t > 1, there are only four possible values for βt1 in terms of βt−11 : βt1 = βt−11 ,
βt1 = β

t−1
1 − 1, βt1 = β

t−1
1 + 1, or βt1 = β

t−1
1 + 2.

Before proving Theorem 7, we need to characterize the way in which a cell can
be added to the polyomino from one step of the process to the next one. Then, we
prove that in each one of these possible cases Theorem 7 holds. We need first to pro-
vide some definitions.

Given a cell a in a polyomino A we define the 1-neighborhood of a, that we
denote by N1(a), as the subset of cells of the infinite complex CW(Z2) that have
a non-empty intersection with a. Observe that N1(a) has a and eight other cells
different from a in it, see Figure 4.2.

n1 n2 n3

n8 a n4

n7 n6 n5

FIGURE 4.2: The nine cells that form the 1-neighborhood of a cell a
with the corresponding notation.

Given a polyomino A and a 2-cell a not in A, it will be useful to consider the set
A2 ∩N1(a) that contains all the 2-cells that are part ofA and, at the same time, are in
the 1-neighborhood of a. Observe that a tile a that is not contained inA is on the site
perimeter of A if and only if A2 ∩N1(a) �= ∅. The proof of the next result involves a
tedious counting of all possibilities of the set of tiles A2 ∩N1(a).
Lemma 13. Suppose that only one 2-cell, denoted by a, is added to a polyomino A in such
a way that the new structure B is again a polyomino. In the eight graphic representations
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of the intersection A2 ∩N1(A) depicted in Figure 4.3, let the green cells (they also have a
black dot inside) represent cells that might or might not be present in A, let the gray cells be
present in A, let the red cell to be a, and let the white cells (the rest of the cells) be those not
present in A. Then, ignoring the symmetries of the regular square tessellation of the plane,
one and only one of the nine possible cases shown in Figure 4.3 holds for A2 ∩N1(a).

Proof. (Theorem 7)
Let β1β1β1 = (β01,β

1
1,β

2
1...) be a sequence obtained as an outcome of a simulation

{Gt(ω)} of the EGM stochastic process. Suppose that at time t one tile a on the site
perimeter of Gt−1(ω) was added to the polyomino Gt−1(ω) (as described in Defini-
tion 4). Then, by Lemma 13, one and only one of the eight cases depicted in Figure
4.3 holds. The rest of the proof relies on Euler’s formula, stated in Equation (4.2), as
follows.

We start by analyzing in detail the difference between βt1 and βt−11 for Case 4,
and for the remaining cases, the proof can be completed in an analogous way.

• Case 4.1: In this case no vertices or edges or faces are added to the graph
G(Gt−1(ω)). This implies that v(Gt(ω)) = v(Gt−1(ω)), e(Gt(ω)) = e(Gt−1(ω)),
and f(Gt(ω)) = f(Gt−1(ω)). From Equation (4.2), we have

β1(Gt−1(ω)) = e(Gt−1(ω)) − t− v(Gt−1ω) + 1, (4.3)

and
β1(Gt(ω)) = e(Gt(ω)) − (t+ 1) − v(Gtω) + 1. (4.4)

Then, from equations (4.3) and (4.4), we get

β1(Gt(ω)) −β1(Gt−1(ω)) = −1. (4.5)

• Case 1.1, 1.2, and 1.3: For these cases we get that

β1(Gt(ω)) −β1(Gt−1(ω)) = 0. (4.6)

• Cases 2.1, 2.2, and 2.3: For these cases, after examining each one, we get that

β1(Gt(ω)) −β1(Gt−1(ω)) = 1. (4.7)

• Case 3.1: In this case, we are adding three edges and one face. This implies

β1(Gt(ω)) −β1(Gt−1(ω)) = 2. (4.8)

From equations (4.5) to (4.8), we conclude that −1 ≤ βt1 − β
t−1
1 ≤ 2, and this is true

for all t ∈ (N ∩ {0}).

4.4 Computational experiments: the algorithms

In this section we describe the algorithms that we have implemented to run our sim-
ulations of the EGM stochastic process and to keep track of the homology at each
time in the process.
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n1 n2 n3

n8 a n4

n7 n6 n5

Case 1.1

n1 n2 n3

n8 a n4

n7 n6 n5

Case 1.2

n1 n2 n3

n8 a n4

n7 n6 n5

Case 1.3

n1 n2 n3

n8 a n4

n7 n6 n5

Case 2.1

n1 n2 n3

n8 a n4

n7 n6 n5

Case 2.2

n1 n2 n3

n8 a n4

n7 n6 n5

Case 2.3

n1 n2 n3

n8 a n4

n7 n6 n5

Case 3.1

n1 n2 n3

n8 a n4

n7 n6 n5

Case 4.1

FIGURE 4.3: All possibilities for A2 ∩N1(a).
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It is desirable to give, for any computational mathematical experiment, a detailed
report describing the experiments in order to make it possible to reproduce them and
also to state in detail the conditions and algorithms under which the computational
experiments were done. Because of this, in what follows we describe in detail the
algorithms that we have implemented.

We have different algorithms depending on which variables we are interested in
measuring. This allows us to sample and simulate the EGM for very large numbers
of cells. In particular, there is a difference between the algorithm that we use to keep
track of the rank of the first homology group at each iteration and the algorithm that
we have implemented for generating the persistent homology diagrams and bar-
codes.

We designed and implemented some of the algorithms in R [25], which is a lan-
guage and environment for statistical computing. We have also conducted the sta-
tistical analysis of the results using R. We designed and implemented the algorithms
related to the persistent homology of the EGM in Python.

4.4.1 The algorithm for measuring the rank of the first homology group

We have made simulations of the EDG stochastic process using the algorithm:

Step 0) Select a natural number N and set the counter r = 0.

Step 1) To generate G0 we start with the canonical closed unit square. At this step
β01 = 0. Set r = 1.

Step 2) To generateG1, add a new cell to the site perimeter of the canonical closed unit
square, choosing uniformly at random one cell contained in the site perimeter
of the canonical closed unit square. As we have discussed in Section 3.1, at this
step β11 = 0.

Step 3) In order to generate Gk+1, for k ≥ 1, add a new cell a to the site perimeter of
Gk, choosing a uniformly at random from the set of all cells contained in the
site perimeter of Gk.

Step 4) Determine in which case of Figure 4.3 is the structure of N1(a)∩Gk.
Step 5) Based on the result obtained in Step 4, find the value of βk+11 by applying The-

orem 7. Set r = r+ 1.

Step 6) If r < N, return to Step 3). Otherwise, finish the process.

Observe that at each time t it is possible to keep track of the values of v(Gt), e(Gt)
and f(Gt), depending on the result of Step 4). In our algorithm, we have calculated
the Betti numbers based on these quantities and Euler’s Formula following the re-
sults of Theorem 7.

From Step 4) it is also possible to know the perimeter of Gt at each time, and this
gives us the number of sites that are on the topological boundary of Gt. We are also
able to keep track of the areas of the holes at each time during the process. Alas, this
takes more computational time than restricting the algorithm to compute only the
change in the homology at each time.
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4.5 Obtained results of the computational experiments

4.5.1 On the Evolution and Asymptotic Behavior of the Homology of the
Process

The next figure shows a log-log plot. The zlog axis shows the number of tiles and
the xlog axis shows βt1. For each time t (that is equal to the number of tiles), we ran
a simulation of the EGM up to time t and computed βt1 for Gt. For each t, a new
simulation was made. The vector of t was from t = 5, 000 to t = 10, 000, increasing
by 100 between any two consecutive t. It is important to consider that only one
simulation was plotted for each t. Then, on the log-log plot, a line was fit to the
point cloud obtaining a slope of .56334 and an intercept of 2.08344.
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The adjustment was statistically significant. The statistical details of the adjustment
are summarized in the next figure.



4.5. Obtained results of the computational experiments 57

In another experiment, we fixed t for t = 10, 000 and we made 100 simulations of
the Eden Growth Model up to time t. For each one of the simulations we calculated
βt1 = β

10,000
1 . The next histogram was made using these results.

The mean was 109.17
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We observed a mean of 109.17, which is a little bit bigger than 2
√
10, 000—see

Conjecture 2.

We then repeated the experiment, but this time we ran 1, 000 simulations for t =
10, 000. The next histogram shows the results of these simulations. The mean that
we obtained this time was 109.7 which is almost the same as the mean we obtained
from the experiment with only 100 repetitions of the simulation.
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We also made a simulation for t = 1, 000, 000, and the number of holes at the
end of this simulation came to β1 = 1227. These results suggest that a Central Limit
Theorem must hold for E[β1].

4.5.2 On the change of β1

We have proved in Theorem 7 that at each time a cell is added, we have one and only
one of the following possibilities regarding changes in the homology of the process:

• βt+11 = βt1,

• βt+11 = βt1 − 1,

• βt+11 = βt1 + 1,

• βt+11 = βt1 + 2.

As we have seen in Section 4.4.1, the algorithm that we have implemented can
keep track of how the Betti numbers (the number of holes in the polyominos) are
changing in time. This implies that, at the end of the process, we can know how
many occurrences there have been of each one of these four options.

In the next figure, we show a simulation of the EGM for up to 1, 000 tiles that
shows the change of β1 at each time t for 1 ≤ t ≤ 1, 000.



4.5. Obtained results of the computational experiments 59



60 Chapter 4. Stochastic growth process with polyominoes

In Table 4.1, we summarize the results that we obtained in terms of the differ-
ences between βt1 and βt−11 in simulations of the EGM for different t. The column
labeled as i, for i ∈ {−1, 0, 1, 2}, has the number of times when βt1 −β

t−1
1 = i.

TABLE 4.1

t -1 0 1 2 Total of Holes Last time t, when βt1 = 0
1000 70 832 95 1 27
2000 187 1581 221 9 52
3000 297 2361 331 9 52
5000 530 3887 561 20 71
5000 536 3883 554 25 68
5000 508 3928 539 23 67
6000 660 4639 666 33 72
6000 633 4685 658 22 69
6000 628 4690 656 24 76

10,000 1151 7628 1162 58 127
10,000 1153 7650 1129 67 110
10,000 1158 7636 1143 62 109
20,000 2374 15203 2311 111 159 19
20,000 2359 15204 2340 96 173 19
20,000 2360 15186 2369 84 177 33

1,000,000 1227

We conjecture from these computational experiments that, as time goes to infin-
ity, the probabilities of creating and destroying one hole are converging to a value
near to 0.1. Also, we conjecture that the probability of creating zero holes is bigger
than 0.75, and we expect it to be around 0.8. Finally, the probability of creating two
holes is smaller that the rest of the probabilities, and we expect it to be less than
0.005. It is important to mention that, up to now, we do not know if these probabili-
ties are stabilizing when t→ ∞.

4.5.3 For which t does βt1 = 0 and how often does this happen?

We have observed in each of our simulations that there is a time t that varies between
20 and 90—see Table 4.1—at which βt1 stops being zero (and never goes back to take
the value of zero). The conjecture is:

Conjecture 3. If we define h(t) := P[βt1 = 0], then limt→∞ h(t) = 0 and the latter should
converge to zero exponentially fast.
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4.5.4 On the perimeter and limiting shape

FIGURE 4.4: The perimeter of a simulation of the EGM with 100,000
cells.

With our algorithms we can keep track of the evolution of the perimeter of the EGM
in the simulations. Understanding more about the behavior of the perimeter is im-
portant in order to understand the evolution of the topology of the EGM. In the
long run, almost all the holes will be located in an epsilon neighborhood of the
perimeter—see Figure 4.4.
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From these results we also conjecture that there exists a constant C such that the
site perimeter tends to C

√
t as t goes to infinity. Because of Theorem A, we know

that C > 4. We could also explore, from a combinatorial point of view, the set of
polyominoes with holes only near the perimeter. We then would like to answer the
question: What is the maximum possible number of holes, located near the perime-
ter, that a polyomino can have?

4.5.5 About the Area of the Holes and the Persistent of the Holes

In the simulations we can keep track of the area of each hole, the time at which each
hole was created and destroyed, and how the area of each hole changes in time. This
allows us to:

a) Have a persistence diagram on the filtration given by the polyominoes that
captures how the topology of the process is evolving in time.

b) Explore the average time that a hole, created at time t, will persist. This persis-
tent time should be increasing as the process evolves in time because the prob-
ability of destroying a hole at time t is inversely proportional to the perimeter
of Gt, and the perimeter is increasing with time (it will also depend on the
perimeter of the hole). The goal is to find the precise rate at which the time of
a hole being alive is increasing.

c) We have observed that most of the holes have area 1. But, the probability that
big holes are created is increasing, at a very low rate, as the time increases.

d) The reason for not observing holes with big area very often is that they are
very unstable in the sense that the probability that a tile in the site perimeter is
placed on the perimeter of a hole is proportional to the area of the hole.

Because we are keeping track of the area of each hole we have geometric infor-
mation about the homology of the EGM and this is giving us another dimension of
measure of the persistent homology, not only the time at which the holes are created
and covered. The birth and death times associated with a hole will be proportional
to the size of a hole after rescaling.

Also, it is important to mention that the algorithm that we have designed and
implemented keeps track of the persistent homology splitting tree [26].
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4.5.6 On persistent homology: barcodes and persistence diagrams

Finally, we show some persistence diagrams and their associated barcodes. We have
run the extended algorithm that we have implemented, that can keep track of each
one of the holes created in the EGM process, for different times. Results for t = 500,
t = 5, 000, and t = 50, 000 are shown below. In Appendix A.1 we present results for
several other values of t.

Below we show a simulation for t = 500. The green tile is the starting tile of the
EGM process and the red tiles are the holes of the polyomino.
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Below we show a simulation for t = 5, 000. The green tile is the starting tile of
the EGM process and the red tiles are the holes of the polyomino.
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Below we show a simulation for t = 50, 000. The green tile is the starting tile of
the EGM process and the red tiles are the holes of the polyomino.
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These experiments give experimental evidence for the Conjecture 2 to be true.
This conjecture is stated in the introduction of this chapter. We show in Appendix
B persistence diagrams and barcodes for simulations of the EGM for different times
than t = 500 and t = 50, 000.
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Appendix A

Sampling random polyominoes

A.1 Simulation of random polyominoes

Markov Chain Monte Carlo Metropolis and Metropolis–Hasting algorithms are com-
monly used to sample random structures with a target distribution of very complex
combinatorial and geometrical objects. For example, for sampling random states of
disc configuration spaces, random trees, and random structures with crystals and
quasi-crystal molecular arrangements [5, 7, 12].

In this appendix we briefly describe the Markov Chain Monte Carlo (MCMC)
algorithms that we have implemented to sample random polyominoes. We omit the
proofs of the results contained in this appendix.

A.1.1 Simulation of uniformly random polyominoes

For generating Figure 3.1 we have implemented a MCMC Metropolis algorithm with
the uniform distribution as the target stationary distribution. First, we describe this
MCMC Metropolis algorithm and then we state in Theorem 8 that its associated,
homogeneous in time, Markov process converges to the uniform distribution. Select
a natural number n ∈ N. Then:

Step (0) Set A = W, where W is the n-Worm which is the unique polyomino that has
its n tiles in the same row.

Step (1) Select one of the tiles contained in A with uniform probability. We represent
this tile by x.

Step (2) Remove the tile x from A. We represent the resulting configuration, which has
n− 1 tiles, by A \ {x}. Now, select with uniform probability one of the tiles that
are on the site perimeter of A \ {x}. Denote this tile by y.

Step (3) Place a tile on the site y selected in the previous step. Denote the obtained
structure by (A \ {x}) + {y}. Then, if (A \ {x}) + {y} is a polyomino make A =
(A \ {x}) + {y} and go to Step (1). If (A \ {x}) + {y} is not a polyomino, do not
make changes in A (remove y and replace x where it was) and return to Step
(1).

Stop the algorithm after finishing Step (3) a desired number of times. We discuss
in the next section how this stopping time should/could be selected.

The previous algorithm defines the transition probabilities of a homogeneous (in
time) Markov chain with An as its state space. Denote these transition probabilities
by P(A,B) for allA,B ∈ An. The value of P(A,B) gives the probability of getting the
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polyomino B from the polyomino A with the algorithm described above. Because
the Markov chain is homogeneous in time, we have Pt(A,B) = P(A,B) for all t ∈ N

and all A,B ∈ An.
This Markov chain has interesting properties that guarantee that it converges to

the uniform distribution. As we did before in this thesis, we are denoting by π the
uniform distribution defined over the set An.

Theorem 8. The Markov chain defined by the transition probabilities P(·, ·) is an aperiodic
and irreducible Markov chain that fulfills, with respect to the uniform distribution π, the
Detailed Balance Condition:

π(A)P(A,B) = π(B)P(B,A),

for all A,B ∈ An.

Theorem 8 implies that the uniform distribution is the unique stationary distri-
bution for this Markov chain. Hence, if we run the algorithm associated with this
Markov chain for long enough time, then we will sample an n-omino from a distri-
bution that is close to the uniform distribution.

But, how do we know how close we are from sampling uniform distributed ran-
dom n-ominoes if we run the algorithm for a certain time? Or, how do we know for
how long we need to run the algorithm if we want to be very close to the uniform
distribution? Moreover, how do we measure the distance between the uniform dis-
tribution and the distribution that we are sampling from if we set a fixed time that
we are running the algorithm? These questions can be stated in terms of the mixing
time associated with a Markov chain that we define in the next section.

A.1.2 Mixing time

If P(x,y) defines the probability of going from state x to state y in an homogeneous
Markov chain process with state space χ, and we know that it converges in distri-
bution to the stationary distribution π, then we would like to determine the right
mixing time: How long should we run the Markov chain process to be close enough
to π? In this scenario it is common to measure distances between two distributions
by the total variation distance defined as

|| Ptx − π ||TV=
1

2

∑
y

| Pt(x,y) − π(y) |= max
A⊂χ

| Pt(x,A) − π(A) |, (A.1)

where Ptx is a column of probabilities that corresponds to the transition probabilities
from x to all other states at time t.

Now, we can restate the problem of finding the mixing time as follows: Given
Pt,π, x, and ε, how large should t be to guarantee that || Ptx − π ||TV< ε ? We will
denote this mixing time as tmix(ε).

Commonly, the mixing time is selected to be tmix(1/2). We refer the reader to the
monograph [7] by P. Diaconis for an explanation of why to select 1/2 and the book
[22] by Y. Peres and D. Levin for general reference on mixing times of Markov chains.
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It is relevant to mention that it is not known if the mixing time associated with
this Markov chain is polynomial with respect to the number of tiles in a polyomino.
It could be the case that this mixing time is polynomial with respect to the number
of polyominoes with a fixed area, which would imply that the mixing time grows
exponentially fast (at the rate of the cardinality of An). Another reason that makes
the analysis of this Markov chain so difficult is that it is not transitive (because it is
not regular). Nevertheless, as we have mentioned in Section 3.4, this algorithm has
been used to sample random polyominoes (lattice animals) since the 1970s [29].

A.1.3 Simulation of polyominoes with percolation distributions

We have generated Figure 3.8 by implementing a Markov Chain Monte Carlo Metropolis–
Hasting (MH) algorithm. This algorithm allows us to (asymptotically) sample poly-
ominoes from the percolation distributions πp defined on An—see Section 3.4.

This algorithm is determined by a conditional density and a target density that in
our case is πp. The conditional density is given by the transition probabilities ρ(·, ·)
defined by: ρ(A1,A2) = 0 if P(A1,A2) = 0, and

ρ(A1,A2) = min
{
πp(A2)

πp(A1)

PY(A2,A1)
PY(A1,A2)

, 1
}

= min
{
(1− p)t2−t1 , 1

}

if PY(A1,A2) �= 0, for allA1,A2 ∈ An. The transition probabilities P(·, ·) were defined
in the previous section. The values t1 and t2 represent the site perimeter of A1 and
A2, respectively.The algorithm is the following:

Step (0) Set A = W, where W is the n-Worm which is the unique polyomino that has
its n tiles in the same row.

Step (1) Select one of the tiles contained in A with uniform probability. We represent
this tile by x.

Step (2) Remove the tile x from A. We represent the resulting configuration, which has
n− 1 tiles, by A \ {x}. Now, select with uniform probability one of the tiles that
are on the site perimeter of A \ {x}. Denote this tile by y.

Step (3) Place a tile on the site y selected in the previous step. Denote the obtained
structure by (A \ {x}) + {y}. If (A \ {x}) + {y} is not a polyomino, do not make
changes in A (remove y and replace x where it was) and return to Step (1). If
(A \ {x}) + {y} is a polyomino go to the next step.

Step (4) Define B = (A \ {x}) + {y}. Then, with probability ρ(A,B), set A = B and go to
Step (1); and, with probability 1− ρ(A,B), do not make changes in A (remove
y and replace xwhere it was) and return to Step (1).

By the construction of the algorithm, its associated Markov chain is converging
to the percolation distribution πp because it fulfills the detail balance condition with
respect to this distribution.

Also, this Markov chain has the same properties as the Markov chain that we
have defined for the uniform distribution case. Therefore, we do not know the mix-
ing time for this case either, even though we have used this algorithm to sample
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polyominoes with the percolation distributions πp. It remains as an open problem
to establish the mixing time of this MCMC algorithm.
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Appendix B

Persistence diagrams and barcodes
for the EGM stochastic process

In this appendix we present results of the simulation experiments described in Sec-
tion 4.5.6 for several additional values of t.

Below, we show a simulation of the EGM stochastic process for t = 100, its per-
sistence diagrams, and barcodes. The green tile is the starting tile of the EGM process
and the red tiles are the holes of the polyomino.
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Below, we show a simulation of the EGM stochastic process for t = 1, 000, its
persistence diagrams, and barcodes. The green tile is the starting tile of the EGM
process and the red tiles are the holes of the polyomino.
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Here we show a simulation of the EGM stochastic process for t = 10, 000, its
persistence diagrams, and barcodes. The green tile is the starting tile of the EGM
process and the red tiles are the holes of the polyomino.



78 Appendix B. Persistence diagrams and barcodes for the EGM stochastic process



Appendix B. Persistence diagrams and barcodes for the EGM stochastic process 79

Lastly, we show a simulation of the EGM stochastic process for t = 100, 000, its
persistence diagrams, and barcodes. The green tile is the starting tile of the EGM
process and the red tiles are the holes of the polyomino.
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All this simulations provide supporting evidence for the Conjecture 2.
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